Publications by authors named "Ulrich Krupp"

Studying steel microstructures yields important insights regarding its mechanical characteristics. Within steel, microstructures transform based on a multitude of factors including chemical composition, transformation temperatures, and cooling rates. Martensite-austenite (MA) islands in bainitic steel appear as blocky structures with abstract shapes that are difficult to identify and differentiate from other types of microstructures.

View Article and Find Full Text PDF

Fully ferritic stainless steels, strengthened by Laves phase precipitates, were developed for high-temperature application in the next generation of ultra-super-critical thermal power plants. Based on the rapid occurrence of thermomechanically induced precipitation in strengthening Laves phase particles, a novel thermomechanical process route for this class of steels was developed. A controlled precipitation of particles, in a desired morphology and quantity, and an optimization of the corresponding forging parameters was achieved on a laboratory scale.

View Article and Find Full Text PDF

Diffraction and phase contrast tomography techniques were successfully applied to an austenitic-ferritic duplex stainless steel representing exemplarily a metallic material containing two phases with different crystal structures. The reconstructed volumes of both phases were discretized by finite elements. A crystal plasticity finite-element analysis was executed in order to simulate the development of the experimentally determined first and second order residual stresses, which built up due to the manufacturing process of the material.

View Article and Find Full Text PDF

The hot deformation behaviour of air-hardening martensitic forging steels (of type 1.5132) is presented. The newly developed steels are characterized through dilatometric tests as well as through microstructure analyses with LOM and SEM and hardness measurements.

View Article and Find Full Text PDF

The use of proton exchange membrane (PEM) electrolyzers is the method of choice for the conversion of solar energy when frequently occurring changes of the current load are an issue. However, this technique requires electrolytes with low pH. All oxygen evolving electrodes working durably and actively in acids contain IrO.

View Article and Find Full Text PDF