Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ.
View Article and Find Full Text PDFThree dimensional (3D) bioprinting of multiple cell types within optimised extracellular matrices has the potential to more closely model the 3D environment of human physiology and disease than current alternatives. In this study, we used a multi-nozzle extrusion bioprinter to establish models of glioblastoma made up of cancer and stromal cells printed within matrices comprised of alginate modified with RGDS cell adhesion peptides, hyaluronic acid and collagen-1. Methods were developed using U87MG glioblastoma cells and MM6 monocyte/macrophages, whilst more disease relevant constructs contained glioblastoma stem cells (GSCs), co-printed with glioma associated stromal cells (GASCs) and microglia.
View Article and Find Full Text PDFThe magnocellular neurones of the supraoptic nucleus (SON) and paraventricular nucleus release neuropeptide from their axon terminals and also from their dendrites. In the axon terminals, swellings known as Herring bodies are responsible for the degradation of aged, unreleased large dense-cored vesicles (LDCVs) by lysosomes. Dendrites of magnocellular neurones also contain a large number of LDCVs but specialised areas of vesicle degradation have yet to be discovered.
View Article and Find Full Text PDFThe intracellular messenger cAMP is essential for vital processes ranging from ovulation to cognition. There are 10 genes for adenylyl cyclase (AC), the biosynthetic enzyme of cAMP. Nine of these encode membrane-bound proteins and one gives rise to soluble AC.
View Article and Find Full Text PDFSynaptic terminals and neuroendocrine cells are packed with secretory vesicles, only a few of which are docked at the plasma membrane and readily releasable. The remainder are thought to constitute a large cytoplasmic reserve pool awaiting recruitment into the readily releasable pool (RRP) for exocytosis. How vesicles are prioritized in recruitment is still unknown: the choice could be random, or else the oldest or the newest ones might be favoured.
View Article and Find Full Text PDFWe have developed a system for the real-time study of regulated exocytosis in living, cultured bovine adrenal chromaffin cells (BCCs). Exocytosis was monitored by the use of total internal reflection fluorescence (TIRF) microscopy to image single large dense-core secretory vesicles (LDCVs). Fluorescent labeling of LDCVs was achieved either with the membrane-permeant weak base, acridine orange (AO), or by transduction of BCCs so as to express a fluorescent chimeric "cargo" protein that is targeted to LDCVs.
View Article and Find Full Text PDF