Publications by authors named "Ulrich Jung"

Triazatriangulenium (TATA) platform molecules allow the preparation of functionalized surfaces with well-defined lateral spacings of freestanding functional groups. Using scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and complementary density functional theory calculations the chemical composition and orientational order of adlayers of functionalized azobenzene containing TATA platform molecules were characterized. According to these studies the molecules are chemically intact on the surface after self-assembly from solution and exhibit a well-defined adsorption geometry where the azobenzene units are oriented almost perpendicular to the surface.

View Article and Find Full Text PDF

In situ scanning tunneling microscopy and cyclic voltammetry studies of self-assembled octyl-triazatriangulenium monolayers on Au(111) electrode surfaces in 0.1 M HClO4 reveal a complex surface phase behavior, involving two fast, highly reversible transitions between different ordered adlayer phases: With decreasing potential, the preadsorbed (√19 × √19)R23.4° adlayer first is converted into a (7√3 × 7√3) and then into a (2√3 × 2√3)R30° phase, corresponding to a stepwise increase in the local packing density of the molecules.

View Article and Find Full Text PDF

Spectroscopic evidence of a reversible, photoinduced trans ↔ cis photoisomerization is provided for an azobenzene-functionalized triazatriangulene (TATA) platform on Au(111). As shown by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), these molecules form a well-ordered self-assembled monolayer (SAM) on Au(111). The surface-adsorbed azo-TATA platforms are also investigated by infrared reflection absorption spectroscopy (IRRAS); a methoxy marker group at the upper phenyl ring of the azo moiety is employed to monitor the switching state.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how to attach chromophores, specifically porphyrins, to metal surfaces for creating advanced photonic devices and light-harvesting systems.
  • The researchers achieved this by using a self-assembly technique to position the porphyrins upright on a gold surface (Au(111)), which was validated through various methods like STM and absorption spectroscopy.
  • The study reveals that while the smaller porphyrins can rotate freely due to their design, the larger triphenylporphyrin is constrained in its movement due to its size and interactions with neighboring molecules, leading to a specific alignment.
View Article and Find Full Text PDF

Localized plasmon resonance (LSPR) spectroscopy, employing gold nanodisk substrates, is applied for studies of photoswitching in self-assembled monolayers of azobenzene-containing thiols. By choosing customized samples in which the sharp LSPR resonance is well separated from the spectral regime of the molecular absorption bands, the photoisomerization kinetics of the adlayer can be monitored in real time. Quantitative data on the photoinduced trans-cis and cis-trans isomerization processes in inert gas atmosphere were obtained as a function of irradiation intensity and temperature, demonstrating the high sensitivity of this technique to such processes in functional adlayers.

View Article and Find Full Text PDF

Carbon tips for in situ scanning tunneling microscopy studies in an electrochemical environment were prepared by electrochemical etching of carbon fibers and subsequent coating with electrodeposition paint and a silicone elastomer. The tips obtained were stable in acidic electrolyte and allowed high-resolution in situ imaging of the bare Au(111) electrode surface and of Au(111) covered by monolayers of the octyl-triazatriangulenium molecule.

View Article and Find Full Text PDF

The platform approach for preparation of molecular adlayers with freestanding functional groups was extended to systems on the basis of the trioxatriangulenium ion. Self-assembled monolayers of these compounds were prepared on Au(111) surfaces and characterized by scanning tunneling microscopy, revealing highly-ordered structures.

View Article and Find Full Text PDF

Adlayers of different azobenzene-functionalized derivatives of the triazatriangulenium (TATA) platform on Au(111) surfaces were studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS), and cyclic voltammetry (CV). The chemical composition of the adlayers is in good agreement with the molecular structure, i.e.

View Article and Find Full Text PDF

The photoisomerization of self-assembled monolayers of azobenzene-containing alkanethiols, as well as of mixed monolayers of these substances with n-alkanethiol spacer molecules on Au surfaces, was studied by photoelectrochemical measurements and surface plasmon resonance spectroscopy. A strong dependence on the molecular structure of the adsorbates was found, specifically on the linker between the azobenzene moiety and the alkanethiol: while molecules with an amide group were photoinactive, those with an ether group exhibited pronounced, reversible photoisomerization in pure and mixed adlayers. Both trans-cis and cis-trans isomerization followed first-order kinetics with time constants that suggest high quantum efficiencies for these processes.

View Article and Find Full Text PDF

Detailed scanning tunneling microscopy studies of the attachment of freestanding molecular functions to Au(111) surfaces via self-assembly of functional molecules based on triazatriangulenium platforms are presented. As shown for molecules with side chains of different length and phenyl, azobenzyl, or azobenzyl derivatives with different terminal groups (iodo, cyano, or dimethyl) as functional units, this approach allows the preparation of very stable, hexagonally ordered adlayers. The intermolecular spacings in these adlayers are independent of the attached functions with the latter being orientated perpendicular to the Au surface.

View Article and Find Full Text PDF

Self-assembled monolayers of azobenzene-containing thiols on smooth Au(111) surfaces were studied by gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS). By adsorption of colloidal Au nanoparticles on top of the organic adlayer highly reproducible spectra with strongly enhanced intensities are obtained. The observed bands indicate a trans conformation of the azobenzene moieties and are in agreement with structural data for the molecular layer.

View Article and Find Full Text PDF

A modular system has been developed to mount molecules upright onto metal surfaces in a well controlled geometry. The approach is based on a reactive platform (triazatriangulenium salt) with an electrophilic center. Functional molecules are attached via C-C bond formation.

View Article and Find Full Text PDF