Publications by authors named "Ulrich Hintermair"

1,3,4,6-Tetraphenylpentalene (PhPn) has been synthesised by chemical oxidation of the corresponding pentalenide complex Mg[PhPn] with iodine. PhPn is a rare example of a room-temperature stable hydrocarbon that is antiaromatic by Hückel's rule and has been fully characterised by NMR and UV-vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Quantum chemical studies including nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID) calculations showed the existence of an 8π antiaromatic core decorated with four independent 6π aromatic substituents.

View Article and Find Full Text PDF
Article Synopsis
  • The symmetrical 1,3,4,6-tetraphenylpentalenide serves as an effective ligand for stabilizing brightly colored bis(pentalenide) lanthanide sandwich complexes.
  • These complexes are relatively easy to create and add to the existing knowledge of lanthanide organometallics.
  • They also open up new avenues for investigating how f-orbitals influence electronic structure and bonding in these materials.
View Article and Find Full Text PDF

Here we report the first example of systematic tuning of the electronic properties of dianionic pentalenides through a straightforward synthetic protocol which allows the controlled variation of substituents in the 1,3,4,6-positions to produce nine new compounds, representing the largest pentalenide study to date. Both electron-withdrawing as well as electron-donating aromatics have been incorporated to achieve different polarisations of the bicyclic 10π aromatic core as indicated by characteristic H and C NMR shifts and evaluated by DFT calculations including nucleus-independent chemical shift (NICS) scans, anisotropy of the induced current density (ACID) calculations, and natural bond orbital (NBO) charge distribution analysis. The introduction of methyl substituents to the pentalenide core required positional control in the dihydropentalene precursor to avoid exocyclic deprotonation during the metalation.

View Article and Find Full Text PDF

Synthesis of a chelating phosphite-phosphine ligand from a tris(quinoxaline) extended resorcin[4]arene and its application in the rhodium-catalyzed hydroformylation of terminal alkyl alkenes are reported. Rhodium complexes are formed within the cavity of the macrocycle and branched-selective hydroformylation of 1-octene with a / ratio of 5.9 has been achieved at 60 °C under 1:1 H/CO (20 bar).

View Article and Find Full Text PDF

The application of and in transmetalation reactions to a range of Rh(I) precursors led to the formation of "half-baguette" (L = 1,5-cyclooctadiene, norbornadiene, ethylene; = 1, 2) and complexes as well as the related iridium complex . With CO exclusive metalation was obtained even when using mono-nuclear Rh(I) precursors, indicating an electronic preference for metalation. DFT analysis showed this to be the result of π overlap between the adjacent M(CO) units which overcompensates for d repulsion of the metals, an effect which can be overridden by steric clash of the auxiliary ligands to yield -configuration as seen in the larger olefin complexes.

View Article and Find Full Text PDF

We report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the Ru di-oxo complex for alkene epoxidation hydrogen bonding, stabilises the Ru mono-oxo intermediate, and is involved in the regeneration of the Ru di-oxo complex leading to oxygen atom exchange.

View Article and Find Full Text PDF

The first magnesium pentalenide complexes have been synthesized deprotonative metalation of 1,3,4,6-tetraphenyldihydropentalene () with magnesium alkyls. Both the nature of the metalating agent and the reaction solvent influenced the structure of the resulting complexes, and an equilibrium between and was found to exist and investigated by NMR, XRD, and UV-vis spectroscopic techniques. Studies on the reactivity of with water, methyl iodide, and trimethylsilylchloride revealed that the unit undergoes electrophilic addition at 1,5-positions instead of 1,4-positions known for the unsubstituted pentalenide, , highlighting the electronic influence of the four aryl substituents on the pentalenide core.

View Article and Find Full Text PDF

Sensitivity in FlowNMR spectroscopy for reaction monitoring often suffers from low levels of pre-magnetisation due to limited residence times of the sample in the magnetic field. While this in-flow effect is tolerable for high sensitivity nuclei such as H and F, it significantly reduces the signal-to-noise ratio in P and C spectra, making FlowNMR impractical for low sensititvity nuclei at low concentrations. Paramagnetic relaxation agents (PRAs), which enhance polarisation and spin-lattice relaxation, could eliminate the adverse in-flow effect and improve the signal-to-noise ratio.

View Article and Find Full Text PDF

In search of novel pentalenide ligands for use in organometallic chemistry and homogeneous catalysis, we report the scope of a straightforward base-promoted Michael annulation of cyclopentadienes with α,β-unsaturated ketones that allows the introduction of symmetrical as well as unsymmetrical aryl and alkyl substitution patterns including electron-donating as well as electron-withdrawing substituents. More than 16 examples of various isomers of 1,3,4,6-tetraarylated dihydropentalenes have been synthesized in isolated yields of up to 78%, representing a substantial expansion of the range of dihydropentalene scaffolds known to date. Double bond isomerization between the two pentacyclic rings in 1,2-dihydropentalenes with electronically different substituents occurred depending on the polarization of the molecule.

View Article and Find Full Text PDF

FlowNMR spectroscopy has become a popular and powerful technique for online reaction monitoring. DOSY NMR is an established technique for obtaining information about diffusion rates and molecular size on static samples. This work extends the FlowNMR toolbox to include FlowDOSY based on convection compensation and use of a low-pulsation pump or flow effect correction, allowing accurate and precise diffusion coefficients to be obtained at flow rates up to 4.

View Article and Find Full Text PDF

Equilibrium conversions for the direct condensation of MeOH and EtOH with CO to give dimethyl- and diethyl carbonate, respectively, have been calculated over a range of experimentally relevant conditions. The validity of these calculations has been verified in both batch and continuous flow experiments over a heterogeneous CeO catalyst. Operating under optimized conditions of 140 °C and 200 bar CO, record productivities of 235 mmol/L·h DMC and 241 mmol/L·h DEC have been achieved using neat alcohol dissolved in a continuous flow of supercritical CO.

View Article and Find Full Text PDF

Noyori-Ikariya type [(arene)RuCl(TsDPEN)] (TsDPEN, sulfonated diphenyl ethylenediamine) complexes are widely used C=O and C=N reduction catalysts that produce chiral alcohols and amines via a key ruthenium-hydride intermediate that determines the stereochemistry of the product. Whereas many details about the interactions of the pro-chiral substrate with the hydride complex and the nature of the hydrogen transfer from the latter to the former have been investigated over the past 25 years, the role of the stereochemical configuration at the stereogenic ruthenium center in the catalysis has not been elucidated so far. Using FlowNMR spectroscopy and nuclear Overhauser effect spectroscopy, we show the existence of two diastereomeric hydride complexes under reaction conditions, assign their absolute configurations in solution, and monitor their interconversion during transfer hydrogenation catalysis.

View Article and Find Full Text PDF

The hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation.

View Article and Find Full Text PDF

The selective catalytic synthesis of limonene-derived monofunctional cyclic carbonates and their subsequent functionalisation via thiol-ene addition and amine ring-opening is reported. A phosphotungstate polyoxometalate catalyst used for limonene epoxidation in the 1,2-position is shown to also be active in cyclic carbonate synthesis, allowing a two-step, one-pot synthesis without intermittent epoxide isolation. When used in conjunction with a classical halide catalyst, the polyoxometalate increased the rate of carbonation in a synergistic double-activation of both substrates.

View Article and Find Full Text PDF

Transfer hydrogenation of acetophenone from formic acid/triethylamine mixtures catalysed by the Ikariya-Noyori complex [(mesitylene)RuCl(R,R)-(TsDPEN)] has been investigated using simultaneous high-resolution FlowNMR and FlowUV-Vis spectroscopies coupled with on-line sampling head-space mass spectrometry and chiral high-performance liquid chromatography using an integrated, fully automated recirculating flow setup. In line with previous observations, the combined results show a gradual switch from formic acid dehydrogenation to hydrogen transfer mediated by the same Ru-hydride complex, and point to a Ru-formate species as the major catalyst intermediate. Hydrogen bonding in the formic acid/triethylamine mixture emerges as a sensitive 1H NMR probe for the transfer hydrogenation activity of the system and can be used to locate optimum reaction conditions.

View Article and Find Full Text PDF

The structure of a highly active pyridine-alkoxide iridium water oxidation catalyst (WOC) is examined by X-ray absorption spectroscopy (XAS). A detailed comparison with IrO2 points to a rigid molecular unit of low nuclearity, with the best analysis suggesting a novel tetrameric iridium-oxo cubane as the resting state.

View Article and Find Full Text PDF

Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr as an inexpensive and efficient protection strategy.

View Article and Find Full Text PDF

We report the solution-phase electrochemistry of seven half-sandwich iridium(III) complexes with varying pyridine-alkoxide ligands to quantify electronic ligand effects that translate to their activity in catalytic water oxidation. Our results unify some previously reported electrochemical data of Cp*Ir complexes by showing how the solution speciation determines the electrochemical response: cationic complexes show over 1 V higher redox potentials that their neutral forms in a distinct demonstration of charge accumulation effects relevant to water oxidation. Building on previous work that analysed the activation behaviour of our pyalk-ligated Cp*Ir complexes -, we assess their catalytic oxygen evolution activity with sodium periodate (NaIO) and ceric ammonium nitrate (CAN) in water and aqueous BuOH solution.

View Article and Find Full Text PDF

While a number of reports have established the unique structures and electronic properties of mono- and dinuclear pentalenide complexes of s, p, d and f block elements, access to these intriguing compounds is restricted by synthetic challenges. Here we review various strategies for the synthesis, functionalisation and (trans)metalation of pentalenide complexes from a practical point of view, pointing out promising avenues for future research that may allow wider access to novel pentalenide complexes for application in many different areas.

View Article and Find Full Text PDF

We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.

View Article and Find Full Text PDF

Three highly porous Zr(iv)-based metal-organic frameworks, UBMOF-8, UBMOF-9, and UBMOF-31, were synthesized by using 2,2'-diamino-4,4'-stilbenedicarboxylic acid, 4,4'-stilbenedicarboxylic acid, and combination of both linkers, respectively. The mixed-linker UBMOF-31 showed excellent hydrogen uptake of 4.9 wt% and high selectivity for adsorption of CO2 over N2 with high thermal stability and moderate water stability with permanent porosity and surface area of 2552 m(2) g(-1).

View Article and Find Full Text PDF