Publications by authors named "Ulrich H Von Andrian"

Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory.

View Article and Find Full Text PDF

The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge.

View Article and Find Full Text PDF

Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells.

View Article and Find Full Text PDF

Circulating leukocytes enter tissue either through endothelial junctions (paracellular) or via a pore through the body of endothelial cells (transcellular). We have previously shown that genetically replacing VE-cadherin with a VE-cadherin-α-catenin (VEC-αC) fusion construct-which binds constitutively to actin-obstructs junctions, and blocks leukocyte extravasation in lung, skin and postcapillary venules of cremaster muscle. However, neutrophil recruitment into the inflamed peritoneal cavity was unimpaired.

View Article and Find Full Text PDF

The nasal mucosa is frequently the initial site of respiratory viral infection, replication, and transmission. Recent work has started to clarify the independent responses of epithelial, myeloid, and lymphoid cells to viral infection in the nasal mucosa, but their spatiotemporal coordination and relative contributions remain unclear. Furthermore, understanding whether and how primary infection shapes tissue-scale memory responses to secondary challenge is critical for the rational design of nasal-targeting therapeutics and vaccines.

View Article and Find Full Text PDF

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process.

View Article and Find Full Text PDF

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.

View Article and Find Full Text PDF

Fleas transmit directly within the dermis of mammals to cause bubonic plague. Syringe-mediated inoculation is widely used to recapitulate bubonic plague and study pathogenesis. However, intradermal needle inoculation is tedious, error prone, and poses a significant safety risk for laboratorians.

View Article and Find Full Text PDF

Background: Although there are several efficacious vaccines against COVID-19, vaccination rates in many regions around the world remain insufficient to prevent continued high disease burden and emergence of viral variants. Repurposing of existing therapeutics that prevent or mitigate severe COVID-19 could help to address these challenges. The objective of this study was to determine whether prior use of bisphosphonates is associated with reduced incidence and/or severity of COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • Regulatory T cells (Tregs) help maintain immune balance but can also hinder effective cancer treatments, making them a target for new therapies like the MALT1 inhibitor, ()-mepazine.
  • Preclinical studies showed that ()-mepazine has strong antitumor effects and works well in combination with anti-PD-1 therapy, specifically in tumor environments without affecting healthy Treg levels.
  • The promising results suggest that further clinical trials are warranted for ()-mepazine in treating patients with challenging tumor types, indicating a new potential approach to improve immunotherapy effectiveness.
View Article and Find Full Text PDF

Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments.

View Article and Find Full Text PDF
Article Synopsis
  • The immune system protects the body from infections and tumors while maintaining balance, while the somatosensory nervous system gathers sensory info to help react to harmful situations.
  • These two systems can work together as an "integrated defense system," with nociceptors detecting harmful stimuli and influencing immune responses positively or negatively.
  • The review discusses the current knowledge of how nociceptors interact with myeloid cells of the innate immune system, especially in barrier tissues, and highlights ongoing questions in the rapidly evolving field of peripheral neuroimmunology.
View Article and Find Full Text PDF

It is known that interactions between nociceptors and dendritic cells (DCs) can modulate immune responses in barrier tissues. However, our understanding of the underlying communication frameworks remains rudimentary. Here, we show that nociceptors control DCs in three molecularly distinct ways.

View Article and Find Full Text PDF

Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age.

View Article and Find Full Text PDF

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration.

View Article and Find Full Text PDF

Neutrophil recruitment from blood into tissues is a hallmark of inflammation and anti-microbial host defense. In this issue, De Giovanni et al. describe an unanticipated role for a serotonin metabolite, 5-HIAA, which is produced by activated platelets and mast cells and engages the orphan receptor, GPR35, to recruit neutrophils to inflamed tissues.

View Article and Find Full Text PDF

CD8 T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8 T cell responses, therapeutic approaches to generate Ag-specific CD8 T cell responses have had limited success. Here, we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8 T cells by diverse cell types.

View Article and Find Full Text PDF

T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi.

View Article and Find Full Text PDF

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8 T cell-dependent anti-tumor immunity in mice.

View Article and Find Full Text PDF

Aging is associated with dysregulated immune functions. Here, we investigated the impact of age on neutrophil diapedesis. Using confocal intravital microscopy, we found that in aged mice, neutrophils adhered to vascular endothelium in inflamed tissues but exhibited a high frequency of reverse transendothelial migration (rTEM).

View Article and Find Full Text PDF

The mesenteric lymph nodes (MLN) are a key site for the generation of adaptive immune responses to gut-derived antigenic material and immune cells within the MLN contribute to the pathophysiology of a range of conditions including inflammatory and autoimmune diseases, viral infections, graft versus host disease and cancer. Targeting immunomodulating drugs to the MLN may thus be beneficial in a range of conditions. This paper investigates the potential benefit of targeting a model immunosuppressant drug, mycophenolic acid (MPA), to T cells in the MLN, using a triglyceride (TG) mimetic prodrug approach.

View Article and Find Full Text PDF

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown.

View Article and Find Full Text PDF