Bioaerosols, such as pollen and fungal spores, are routinely monitored for agricultural, medical or urban greening practices, but sampling methodology is largely relying on techniques more than half a century old. Moreover, biomonitoring campaigns often take place in urban environments, although sources can be located outside cities' borders with ampler vegetation. Therefore, the question arises whether we are accurately picturing the biodiversity and abundance of regional bioaerosols and whether those locally detected might derive from long-distance transport, horizontally or vertically.
View Article and Find Full Text PDFAntibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) μg mL vs 5 μg mL of ZnO NPs, as determined for 10(10) CFU mL .
View Article and Find Full Text PDFAcoustic Harassment Devices (AHD) are widely used to deter marine mammals from aquaculture depredation, and from pile driving operations that may otherwise cause hearing damage. However, little is known about the behavioural and physiological effects of these devices. Here, we investigate the physiological and behavioural responses of harbour porpoises (Phocoena phocoena) to a commercial AHD in Danish waters.
View Article and Find Full Text PDFPrevention of food spoilage, environmental bio-contamination, and pathogenic infections requires rapid and sensitive bacterial detection systems. Among microbial communities, the bacterial strain of Escherichia coli is most widespread, with pathogenic and non-pathogenic strains being biomarkers of bacterial contamination. Here, we have developed a fM-sensitive, simple, and robust electrocatalytically-amplified assay facilitating specific detection of E.
View Article and Find Full Text PDFPathogen-associated infections represent one of the major threats to human health and require reliable methods for immediate and robust identification of pathogenic microorganisms. Here, an inexpensive cellulase-linked immunomagnetic methodology was developed for the specific and ultrasensitive analysis of bacteria at their single-cell levels within a 3 h procedure. Detection of a model bacterium, , was performed in a sandwich reaction with -specific either aptamer or antibody (Ab)-modified magnetic beads (MBs) and Ab/aptamer reporter molecules linked to cellulase.
View Article and Find Full Text PDFCharacterization of airborne bacterial cells requires efficient collection, concentration, and analysis techniques, particularly to overcome the challenge of their dilute nature in outdoor environments. This study aims to establish a rapid and reliable approach for quantification of bacteria in air samples. To do this, a high volume impingement sampler was applied to collect airborne bacteria from a wastewater treatment plant (WWTP).
View Article and Find Full Text PDFNew economic developments in the Arctic, such as shipping and oil exploitation, bring along unprecedented risks of marine oil spills. Microorganisms have played a central role in degrading and reducing the impact of the spilled oil during past oil disasters. However, in the Arctic, and in particular in its pristine areas, the self-cleaning capacity and biodegradation potential of the natural microbial communities have yet to be uncovered.
View Article and Find Full Text PDFThe Arctic is undergoing dramatic climatic changes that cause profound transformations in its terrestrial ecosystems and consequently in the microbial communities that inhabit them. The assembly of these communities is affected by aeolian deposition. However, the abundance, diversity, sources and activity of airborne microorganisms in the Arctic are poorly understood.
View Article and Find Full Text PDFRecently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate.
View Article and Find Full Text PDFThe study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity.
View Article and Find Full Text PDFTrichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S.
View Article and Find Full Text PDFPhenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers.
View Article and Find Full Text PDF