Publications by authors named "Ulrich Bismayer"

In situ temperature-dependent laser-induced photoluminescence and dielectric measurements provide new evidence for the local occurrence of the α  →  β phase transition near 500 K in the preserved crystalline parts of natural radiation-damaged titanite (sample E2335 with ~24% amorphous fraction, containing Fe and Al impurities). Photoluminescence spectroscopic measurements show an anomaly in the vicinity of 500 K. The temperature-dependent evolution of the real part of the electrical conductivity (σ) and the real (ε') and the imaginary (ε″) part of the complex dielectric permittivity (ε ) of titanite have been measured at various AC frequencies (~1.

View Article and Find Full Text PDF

Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo.

View Article and Find Full Text PDF

Rationale: Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available.

Objective: The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma.

View Article and Find Full Text PDF

Three novel uranyl borophosphates, Ag2(NH4)3[(UO2)2{B3O(PO4)4(PO4H)2}]H2O (AgNBPU-1), Ag(2-x)(NH4)3[(UO2)2{B2P5O(20-x)(OH)x}] (x = 1.26) (AgNBPU-2), and Ag(2-x)(NH4)3[(UO2)2{B2P(5-y)AsyO(20-x)(OH)x}] (x = 1.43, y = 2.

View Article and Find Full Text PDF

Effects of radiation damage and thermal annealing on the crystal structure of natural titanite (CaTiSiO(5)) were studied using Raman spectroscopy. The results show that well crystallized natural titanites generally have the P2(1)/a structure at the unit cell level, in contrast to the A2/a symmetry reported previously. Radiation caused by naturally incorporated impurities (such as U and Th) leads to structural damage and amorphization in titanite, as evidenced by a significant loss of band intensity, spectral broadening and frequency shifts.

View Article and Find Full Text PDF

The exceptional properties of lead-based perovskite-type (ABO(3)) relaxor ferroelectrics are due to their structural inhomogeneities. At ambient conditions, the average structure is pseudocubic but rich in ferroic nanoregions too small to be directly studied by conventional diffraction analysis. However, combining in situ temperature and pressure diffraction and Raman scattering allows us to resolve the structural complexity of relaxors.

View Article and Find Full Text PDF

The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.

View Article and Find Full Text PDF

We have employed a combination of powder neutron diffraction and single-crystal synchrotron X-ray diffraction to characterize the pressure-induced phase transitions that occur in the perovskite-type relaxor ferroelectric PbSc(0.5)Ta(0.5)O(3) (PST) and Pb(0.

View Article and Find Full Text PDF

Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.

View Article and Find Full Text PDF

Changes in the chemistry and structure of enamel due to a non-peroxide-based home bleaching product (Rapid White) were studied in vitro using attenuated total reflectance-infrared spectroscopy, Raman spectroscopy, electron probe microanalysis, flame atomic absorption spectroscopy, and total reflection X-ray fluorescence. The results revealed that the citric-acid-containing gel-like component of the bleaching system substantially impacts on the dental hard tissue. Enamel is affected on several levels: (i) the organic component is removed from superficial and deeper enamel layers and remnants of the bleaching gel are embedded in the emptied voids; (ii) cracks and chemical inhomogeneities with respect to Ca and P occur on the surface; and (iii) within a submicron layer of enamel, the Ca-O bond strength in apatite decreases, thus enhancing calcium leakage from the bleached enamel hard tissue.

View Article and Find Full Text PDF

The gradient of structural alteration and molecular exchange across CO(2) laser-irradiated areas in dental enamel was analyzed by Raman and attenuated total reflectance infrared microspectroscopy. The type and the degree of structural changes in morphologically distinguishable zones within the laser spot vary depending on the laser-irradiation parameters--power (1 and 3 W), treatment time (5 and 10 s), and operational mode (super pulse and continuous wave). Using higher power, irrespective of the operation mode, the enamel tissue ablates and a crater is formed.

View Article and Find Full Text PDF

The purpose of this in vitro investigation was to determine the influence of a reduced time interval before debonding on shear bond strength of stainless steel brackets bonded with a custom base indirect technique. A total of 135 bovine permanent mandibular incisors was randomly divided into nine groups of 15 specimens each. Three base composite-sealant combinations were investigated: (1) Phase II base composite, Custom I.

View Article and Find Full Text PDF

The aim of this in vitro investigation was to evaluate bond strength for a cyanoacrylate adhesive in combination with an indirect bonding technique. Eighty bovine permanent mandibular incisors were randomly divided into four groups of 20 teeth each. The influence of two factors on shear bond strength was investigated: (1) type of adhesive (Smartbond cyanoacrylate, Sondhi Rapid Set composite sealant) and (2) time of debonding (30 minutes and 24 hours after bonding).

View Article and Find Full Text PDF

The aim of this in vitro investigation was to evaluate bond strength for a custom base indirect bonding technique using a hydrophilic primer on moisture-contaminated tooth surfaces. Stainless steel brackets were bonded to 100 permanent bovine incisors using a light-cured custom base composite adhesive, a chemically cured sealant, and the hydrophilic primer Transbond MIP (3M-Unitek, Monrovia, Calif). Five groups (A-E) of 20 teeth each were formed according to the time of contamination (before or after application of the primer) and the type of contaminant (distilled water or saliva): A, control group with no contamination; B, contamination with saliva before application of the primer; C, contamination with water before application of the primer; D, contamination with saliva before and after application of the primer; and E, contamination with water before and after application of the primer.

View Article and Find Full Text PDF

Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group.

View Article and Find Full Text PDF