Publications by authors named "Ulrich B Hoff"

Engineered micro- and nanomechanical resonators with ultra-low dissipation constitute a promising platform for various quantum technologies and foundational research. Traditionally, the improvement of the resonator's performance through nanomechanical structural engineering has been driven by human intuition and insight. Such an approach is inefficient and leaves aside a plethora of unexplored mechanical designs that potentially achieve better performance.

View Article and Find Full Text PDF

Direct UV-written waveguides are fabricated in silica-on-silicon with birefringence of (4.9 ± 0.2) × 10, much greater than previously reported in this platform.

View Article and Find Full Text PDF

Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light.

View Article and Find Full Text PDF

A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

View Article and Find Full Text PDF

An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.

View Article and Find Full Text PDF

We report on a hitherto unexplored application of squeezed light: for quantum-enhancement of mechanical transduction sensitivity in microcavity optomechanics. Using a toroidal silica microcavity, we experimentally demonstrate measurement of the transduced phase modulation signal in the frequency range 4-5.8 MHz with a sensitivity -0.

View Article and Find Full Text PDF