The conformational attributes of proline can have a substantial effect on the folding of polypeptide chains into a native structure and on the stability of that structure. Replacing the 4S hydrogen of a proline residue with fluorine is known to elicit stereoelectronic effects that favor a cis peptide bond. Here, semisynthesis is used to replace a cis-proline residue in ribonuclease A with (2S,4S)-4-fluoroproline.
View Article and Find Full Text PDFCytotoxic ribonucleases such as the leopard frog derivative Ranpirnase (Onconase(®)) have emerged as a valuable new class of cancer therapeutics. Clinical trials employing single agent Ranpirnase in cancer patients have demonstrated significant clinical activity and surprisingly low immunogenicity. However, dose-limiting toxicity due to unspecific uptake of the RNase into non-cancerous cells is reached at relatively low concentrations of > 1 mg/m(2).
View Article and Find Full Text PDFDue to its frequent overexpression in a variety of solid tumors the epidermal growth factor receptor (EGFR) is a well-established target for therapeutic interventions in epithelial cancers. In order to target EGFR in head and neck cancer, we have generated a ribonuclease (RNase) fusion protein comprising a humanized anti-EGFR antibody single-chain Fv fragment (scFv) and Ranpirnase, an RNase from Rana pipiens. Fusion of Ranpirnase to the N-terminus of the scFv via a flexible glycine-serine linker (G4S)3 resulted in very poor cytotoxicity of the fusion protein.
View Article and Find Full Text PDFComparative studies on homologous proteins can provide knowledge on how limited changes in the primary structure find their expression in large effects on catalytic activity, stability or the folding behavior. For more than half a century, members of the ribonuclease A superfamily have been the subject of a myriad of studies on protein folding and stability. Both the unfolding and refolding kinetics as well as the structure of several folding intermediates of ribonuclease A have been characterized in detail.
View Article and Find Full Text PDFPeptidyl-prolyl isomerization reactions can make for rate-limiting steps in protein folding due to their high activation energy. Onconase, an unusually stable ribonuclease A homologue from the Northern leopard frog, contains four trans proline residues in its native state. During the refolding from its guanidine hydrochloride unfolded state, which includes the formation of a folding intermediate, the slowest of the three phases has earlier been attributed to a cis-to-trans peptidyl-prolyl isomerization reaction.
View Article and Find Full Text PDFUnfolding by chemical denaturants and the linear extrapolation method are widely used to determine the free energy of proteins. Ribonuclease 3 from bullfrog shows an extraordinary behavior in guanidinium hydrochloride in comparison to its homologues ribonuclease A and onconase with a high transition midpoint of denaturation but an apparently low cooperativity. The analysis of the interdependence of thermal, urea-, and guanidine hydrochloride-induced unfolding revealed that whereas addition of urea resulted in the expected destabilization of all three proteins, guanidine hydrochloride acted diversely: in contrast to ribonuclease A and onconase, both of which were destabilized as expected, low concentrations of guanidine hydrochloride significantly stabilize ribonuclease 3 from bullfrog.
View Article and Find Full Text PDFThe introduction of non-natural modules could provide unprecedented control over folding/unfolding behavior, conformational stability, and biological function of proteins. Success requires the interrogation of candidate modules in natural contexts. Here, expressed protein ligation is used to replace a reverse turn in bovine pancreatic ribonuclease (RNase A) with a synthetic β-dipeptide: β²-homoalanine-β³-homoalanine.
View Article and Find Full Text PDFAmong the strategies that employ genetic engineering to stabilize proteins, the introduction of disulfide bonds has proven to be a very potential approach. As, however, the replacement of amino acid residues by cysteines and the subsequent formation of the covalent bond can result in a severe deformation of the parental protein structure, the stabilization effect is strongly context dependent. Alternatively, the introduction of charged amino acid residues at the surface, which may result in the formation of extra ionic interactions or hydrogen bonds, provide propitious means for protein stabilization.
View Article and Find Full Text PDFBecause of their ability to degrade RNA, RNases are potent cytotoxins. The cytotoxic activity of most members of the RNase A superfamily, however, is abolished by the cytosolic ribonuclease inhibitor (RI). RNase A tandem enzymes, in which two RNase A molecules are artificially connected by a peptide linker, and thus have a pseudodimeric structure, exhibit remarkable cytotoxic activity.
View Article and Find Full Text PDFThe S-peptide and S-protein components of bovine pancreatic ribonuclease form a noncovalent complex with restored ribonucleolytic activity. Although this archetypal protein-fragment complementation system has been the object of historic work in protein chemistry, intrinsic limitations compromise its utility. Modern methods are shown to overcome those limitations and enable new applications.
View Article and Find Full Text PDFThe two homologous proteins ribonuclease A and onconase fold through conserved initial contacts but differ significantly in their thermodynamic stability. A disulfide bond is located in the folding initiation site of onconase (the C-terminal part of the protein molecule) that is missing in ribonuclease A, whereas the other three disulfide bonds of onconase are conserved in ribonuclease A. Consequently, the deletion of this C-terminal disulfide bond (C87-C104) allows the impact of the contacts in this region on the folding of onconase to be studied.
View Article and Find Full Text PDFA promising approach to unravel the relationship between sequence information, tertiary structure, and folding mechanism of proteins is the analysis of the folding behavior of proteins with low sequence identity but comparable tertiary structures. Ribonuclease A (RNase A) and its homologues, forming the RNase A superfamily, provide an excellent model system for respective studies. RNase A has been used extensively as a model protein for folding studies.
View Article and Find Full Text PDFBiotechnol Lett
August 2009
The biotechnological application of enzymes necessitates a permanent quest for new biocatalysts. Among others, improvement of catalytic activity, modification of substrate specificity, or increase in stability of the enzymes are desirable goals. The exploration of homologous enzymes from various sources or DNA-based methods, like site-directed mutagenesis or directed evolution, yield an incredible variety of biocatalysts but they all rely on the restricted number of canonical amino acids.
View Article and Find Full Text PDFThe significant contribution of disulfide bonds to the conformational stability of proteins is generally considered to result from an entropic destabilization of the unfolded state causing a faster escape of the molecules to the native state. However, the introduction of extra disulfide bonds into proteins as a general approach to protein stabilization yields rather inconsistent results. By modeling studies, we selected positions to introduce additional disulfide bonds into ribonuclease A at regions that had proven to be crucial for the initiation of the folding or unfolding process, respectively.
View Article and Find Full Text PDFBy virtue of their RNA degrading catalytic activity, ribonucleases are potentially cytotoxic. For the application of these enzymes as therapeutics, however, they have to overcome several obstacles whose interplay is not yet fully understood. Ribonucleases with a basic pI are not only able to interact with the (negatively charged) cellular membrane but they are also distinctively selective for tumor cells.
View Article and Find Full Text PDFOnconase is an extremely stable member of the RNase A superfamily. The increase in the thermodynamic stability by 20 kJ x mol(-1) in comparison to RNase A was expected to result in altered folding behavior. Despite the lack of cis-Pro residues in native Onconase, refolding at low concentrations of guanidine hydrochloride was complex and showed three kinetic phases (fast, medium, and slow), with rate constants differing by a factor of about 10 each.
View Article and Find Full Text PDFProline is unique among the natural amino acids in the similar propensity of its peptide bond to be in the cis or trans conformation. This attribute affects many processes, including the rate at which proteins fold, their structures, and their activities. Other aliphatic amino acids can serve as mimics for proline residues with trans peptide bonds.
View Article and Find Full Text PDFOnconase (ONC) is a cytotoxic ribonuclease of the pancreatic ribonuclease A superfamily isolated from oocytes or early embryos of the Northern leopard frog (Rana pipiens). It shows anticancer activity and currently is in Phase IIIb clinical trial for unresectable malignant mesothelioma. We generated several variants of ONC possessing mutations in selected structural regions of the molecule that have altered ribonucleolytic activity and/or conformational stability.
View Article and Find Full Text PDFThe cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the intracellular ribonuclease inhibitor (RI) has not yet been fully elucidated. As cytosolic internalization is indispensable for the cytotoxicity of extracellular ribonucleases, we investigated the extent of cytosolic internalization of a cytotoxic, RI-evasive RNase A variant (G88R-RNase A) and of various similarly cytotoxic but RI-sensitive RNase A tandem enzyme variants in comparison to the internalization of the non-cytotoxic and RI-sensitive RNase A.
View Article and Find Full Text PDFBy reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials.
View Article and Find Full Text PDFDue to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor (RI).
View Article and Find Full Text PDFOnconase (ONC) from Rana pipiens is the smallest member of the ribonuclease A (RNase A) superfamily. Despite a tertiary structure similar to RNase A, ONC is distinguished by an extremely high thermodynamic stability. In the present paper we have probed the significance of three structural regions, which exhibit structural peculiarities in comparison to RNase A, for the stability of ONC to temperature and guanidine hydrochloride induced denaturation: (i) the N-terminal pyroglutamate residue, (ii) the hydrophobic cluster between helix I and the first beta-sheet, and (iii) the C-terminal disulfide bond.
View Article and Find Full Text PDFRibonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions.
View Article and Find Full Text PDF