Background: Plastic contamination is one of the concerns of our age. With more than 150 million tons of plastic floating in the oceans, and a further 8 million tons arriving to the water each year, in recent times the scientific community has been studying the effects these plastics have on sea life both in the field and with experimental approaches. Laboratory based studies have been using both natural sea water and artificial sea water for testing various aspects of plastic contamination, including the study of chemicals leached from the plastic particles to the water.
View Article and Find Full Text PDFMicroplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells.
View Article and Find Full Text PDFUnderstanding the Earth's climate system during past periods of high atmospheric CO is crucial for forecasting climate change under anthropogenically-elevated CO. The Mesozoic Era is believed to have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope composition of belemnites are consistently colder than those derived from other temperature proxies, leading to large uncertainties around Mesozoic sea temperatures.
View Article and Find Full Text PDFThe Toarcian Oceanic Anoxic Event (TOAE; Early Jurassic, ca. 182 Ma ago) represents one of the major environmental disturbances of the Mesozoic and is associated with global warming, widespread anoxia, and a severe perturbation of the global carbon cycle. Warming-related dysoxia-anoxia has long been considered the main cause of elevated marine extinction rates, although extinctions have been recorded also in environments without evidence for deoxygenation.
View Article and Find Full Text PDFThe early Eocene (c. 56 - 48 million years ago) experienced some of the highest global temperatures in Earth's history since the Mesozoic, with no polar ice. Reports of contradictory ice-rafted erratics and cold water glendonites in the higher latitudes have been largely dismissed due to ambiguity of the significance of these purported cold-climate indicators.
View Article and Find Full Text PDFMany aspects of the supposed hyperthermal Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic, c. 182 Ma) are well understood but a lack of robust palaeotemperature data severely limits reconstruction of the processes that drove the T-OAE and associated environmental and biotic changes. New oxygen isotope data from calcite shells of the benthic fauna suggest that bottom water temperatures in the western Tethys were elevated by c.
View Article and Find Full Text PDFThe Toarcian Oceanic Anoxic Event (TOAE, Early Jurassic, ~182 Ma ago) was characterised by severe environmental perturbations which led to habitat degradation and extinction of marine species. Warming-induced anoxia is usually identified as main driver, but because marine life was also affected in oxygenated environments the role of raised temperature and its effects on marine life need to be addressed. Body size is a fundamental characteristic of organisms and is expected to decrease as a response to heat stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic-Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δC data. Here we present a δC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom.
View Article and Find Full Text PDFIntroduction: We assessed the Aurora A kinase inhibitor, alisertib, plus paclitaxel (henceforth referred to as alisertib/paclitaxel) as second-line treatment for SCLC.
Methods: In this double-blind study, patients with relapsed or refractory SCLC were stratified by relapse type (sensitive versus resistant or refractory) and brain metastases and randomized 1:1 to alisertib/paclitaxel or placebo plus paclitaxel (henceforth referred to as placebo/paclitaxel) in 28-day cycles. The primary end point was progression-free survival (PFS).
Biological recycling of polyurethanes (PU) is a huge challenge to take up in order to reduce a large part of the environmental pollution from these materials. However, enzymatic depolymerization of PU still needs to be improved to propose valuable and green solutions. The present study aims to identify efficient PU degrading enzymes among a collection of 50 hydrolases.
View Article and Find Full Text PDFPurpose: The aim of this open-label, first-in-setting, randomized phase III trial was to evaluate the efficacy of alisertib, an investigational Aurora A kinase inhibitor, in patients with relapsed/refractory peripheral T-cell lymphoma (PTCL).
Patients And Methods: Adult patients with relapsed/refractory PTCL-one or more prior therapy-were randomly assigned 1:1 to receive oral alisertib 50 mg two times per day (days 1 to 7; 21-day cycle) or investigator-selected single-agent comparator, including intravenous pralatrexate 30 mg/m (once per week for 6 weeks; 7-week cycle), or intravenous gemcitabine 1,000 mg/m or intravenous romidepsin 14 mg/m (days 1, 8, and 15; 28-day cycle). Tumor tissue (disease subtype) and imaging were assessed by independent central review.
Aims This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics and safety of the investigational aurora A kinase inhibitor, alisertib, in three patients with advanced malignancies. Methods Part A; patients received a single 35-mg dose of [C]-alisertib oral solution (~80 μCi total radioactivity [TRA]). Serial blood, urine, and fecal samples were collected up to 336 h post-dose for alisertib mass balance and pharmacokinetics in plasma and urine by liquid chromatography-tandem mass spectrometry, and mass balance/recovery of [C]-radioactivity in urine and feces by liquid scintillation counting.
View Article and Find Full Text PDFCarbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and Sr/Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8-15 wt% REEO, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite.
View Article and Find Full Text PDFSoils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.
View Article and Find Full Text PDFThe Great Ordovician Biodiversification Event (GOBE) was the most rapid and sustained increase in marine Phanerozoic biodiversity. What generated this biotic response across Palaeozoic seascapes is a matter of debate; several intrinsic and extrinsic drivers have been suggested. One is Ordovician climate, which in recent years has undergone a paradigm shift from a text-book example of an extended greenhouse to an interval with transient cooling intervals - at least during the Late Ordovician.
View Article and Find Full Text PDFObjective: This study was conducted to characterize the effects of food on single-dose pharmacokinetics (PK) of the investigational Aurora A kinase inhibitor alisertib (MLN8237) in patients with advanced solid tumors.
Methods: Following overnight fasting for 10 h, a single 50 mg enteric-coated tablet (ECT) of alisertib was administered under either fasted (alisertib with 240 mL of water) or fed (high-fat meal consumed 30 min before receiving alisertib with 240 mL of water) conditions using a two-cycle, two-way crossover design. Patients on both arms were not allowed food for 4 h post-dose.
The Jurassic (∼201-145 Myr ago) was long considered a warm 'greenhouse' period; more recently cool, even 'icehouse' episodes have been postulated. However, the mechanisms governing transition between so-called Warm Modes and Cool Modes are poorly known. Here we present a new large high-quality oxygen-isotope dataset from an interval that includes previously suggested mode transitions.
View Article and Find Full Text PDFCoral skeletons contain records of past environmental conditions due to their long life span and well calibrated geochemical signatures. C and O isotope records of corals are especially interesting, because they can highlight multidecadal variability of local climate conditions beyond the instrumental record, with high fidelity and sub-annual resolution. Although, in order to get an optimal geochemical signal in coral skeleton, sampling strategies must be followed.
View Article and Find Full Text PDFBackground: Alisertib is an investigational, oral, selective inhibitor of aurora kinase A. We aimed to investigate the safety and activity of single-agent alisertib in patients with predefined types of advanced solid tumours.
Methods: We did a multicentre phase 1/2 study at 40 centres in four countries (Czech Republic, France, Poland, and the USA).
On February 2, 2012, the National Cancer Institute (NCI) sponsored a 2-day workshop with the NCI Thoracic Malignancies Steering Committee and the Food and Drug Administration to bring together leading academicians, clinicians, industry and government representatives to identify challenges and potential solutions in the clinical development of novel targeted therapies for lung cancer. Measures of success are rapidly evolving from a scientific and regulatory perspective and the objectives of this workshop were to achieve initial consensus on a high priority biomarker-driven clinical trial designed to rapidly assess the activity of targeted agents in molecularly defined lung cancer subsets and to facilitate generation of data leading to approval of these new therapies. Additionally, the meeting focused on identification of the barriers to conduct such a trial and the development of strategies to overcome those barriers.
View Article and Find Full Text PDFThe Toarcian oceanic anoxic event (T-OAE; ∼ 183 million y ago) is possibly the most extreme episode of widespread ocean oxygen deficiency in the Phanerozoic, coinciding with rapid atmospheric pCO2 increase and significant loss of biodiversity in marine faunas. The event is a unique past tipping point in the Earth system, where rapid and massive release of isotopically light carbon led to a major perturbation in the global carbon cycle as recorded in organic and inorganic C isotope records. Modern marine ecosystems are projected to experience major loss in biodiversity in response to enhanced ocean anoxia driven by anthropogenic release of greenhouse gases.
View Article and Find Full Text PDF