Publications by authors named "Ullman B"

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures.

View Article and Find Full Text PDF

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains.

View Article and Find Full Text PDF

Background: Conflicting results have been reported for telemonitoring in patients with heart failure (HF). We wanted to evaluate whether patients using a tablet computer aimed at improving self-care behavior could do so and also whether it affects quality of life and health-related quality of life, disease knowledge, and in-hospital days.

Methods And Results: Patients with HF (n = 82) were randomized to the intervention group (IG) with a tablet computer (giving information and advice) or the control group (CG) that was subject to standard care.

View Article and Find Full Text PDF

There is an urgent need for the identification and validation of new therapeutic targets in protozoan parasites because currently available drugs are limited in number and usefulness, and no vaccines are available. The discovery that alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, is an efficacious treatment for African Sleeping Sickness caused by the protozoan parasite Trypanosoma brucei, has validated the polyamine pathway as a target in protozoan parasites. Polyamines are ubiquitous organic cations that play critical roles in key cellular processes such as growth, differentiation, and macromolecular biosynthesis.

View Article and Find Full Text PDF

Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani To test ARG function in intact parasites, we generated Δarg null mutants in L.

View Article and Find Full Text PDF

Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L.

View Article and Find Full Text PDF

Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L.

View Article and Find Full Text PDF

Objectives: The Swedish Pulmonary Arterial Hypertension Register (SPAHR) is an open continuous register, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients from 2000 and onwards. We hereby launch the first data from SPAHR, defining baseline characteristics and survival of Swedish PAH and CTEPH patients.

Design: Incident PAH and CTEPH patients 2008-2014 from all seven Swedish PAH-centres were specifically reviewed.

View Article and Find Full Text PDF

Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled.

View Article and Find Full Text PDF

Trypanosoma cruzi is incapable of synthesizing putrescine or cadaverine de novo, and, therefore, salvage of polyamines from the host milieu is an obligatory nutritional function for the parasite. A high-affinity diamine transporter (TcPOT1) from T. cruzi has been identified previously that recognizes both putrescine and cadaverine as ligands.

View Article and Find Full Text PDF

The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli.

View Article and Find Full Text PDF

We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels.

View Article and Find Full Text PDF

Background: The vascular effects exerted by GLP-1 are mediated by several synergistic mechanisms such as involvement of nitric oxide and natriuresis. Recently, it was demonstrated that atrial natriuretic peptide (ANP) is essential for the glucagon-like peptide-1 (GLP-1)-stimulated vascular smooth muscle relaxation that mediates anti-hypertensive action in rodents. Therefore a GLP-1-ANP axis has been suggested.

View Article and Find Full Text PDF

Objectives: To evaluate whether a new home intervention system (HIS, OPTILOGG(®)) consisting of a specialised software, a tablet computer (tablet) wirelessly connected to a weight scale may improve self-care behaviour, health-related quality of life (HRQoL), knowledge about heart failure (HF) and reduce hospital days due to HF.

Design: 82 patients (32% females) with mean age: 75 ± 8 years hospitalised with HF were randomised at discharge to an intervention group (IG) equipped with the HIS or to a control group (CG) receiving standard HF information only. The tablet contained information about HF and lifestyle advice according to current guidelines.

View Article and Find Full Text PDF

APD334 was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure.

View Article and Find Full Text PDF

Unlabelled: Visceral leishmaniasis (VL) caused by Leishmania donovani is a systemic protozoan disease that is fatal if left untreated. The promastigote form of L. donovani is sensitive to growth inhibition by dl-α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), the first enzyme of the polyamine biosynthetic pathway.

View Article and Find Full Text PDF

The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT.

View Article and Find Full Text PDF

6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani.

View Article and Find Full Text PDF

Arginase from parasitic protozoa belonging to the genus Leishmania is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and survival. The high resolution X-ray crystal structures of the unliganded form of Leishmania mexicana arginase (LmARG) and four inhibitor complexes are now reported. These complexes include the reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) and the hydroxylated substrate analogue nor-N(ω)-hydroxy-l-arginine (nor-NOHA), which are the most potent arginase inhibitors known to date.

View Article and Find Full Text PDF

The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural determinants critical for function of these permeases are unknown.

View Article and Find Full Text PDF

Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L.

View Article and Find Full Text PDF

Trypanosoma cruzi has a complex relationship with its mammalian host in which parasite and host metabolic networks are intertwined. A genome-wide functional screen of T. cruzi infection in HeLa cells (Caradonna et al.

View Article and Find Full Text PDF

Background: Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction.

View Article and Find Full Text PDF