The development of a seedling into a photosynthetically active plant is a crucial process. Despite its importance, we do not fully understand the regulatory mechanisms behind the establishment of functional chloroplasts. We herein provide new insight into the early light response by identifying the function of three basic region/leucine zipper (bZIP) transcription factors: bZIP16, bZIP68, and GBF1.
View Article and Find Full Text PDFCryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants.
View Article and Find Full Text PDFN6-methyladenosine is a highly dynamic, abundant mRNA modification which is an excellent potential mechanism for fine tuning gene expression. Plants adapt to their surrounding light and temperature environment using complex gene regulatory networks. The role of mA in controlling gene expression in response to variable environmental conditions has so far been unexplored.
View Article and Find Full Text PDFOligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes throughout life, but the functions of OPCs are not limited to oligodendrogenesis. Here we show that OPCs contribute to thalamocortical presynapse elimination in the developing and adult mouse visual cortex. OPC-mediated synapse engulfment increases in response to sensory experience during neural circuit refinement.
View Article and Find Full Text PDFDespite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo.
View Article and Find Full Text PDFLight is a crucial exogenous signal sensed by cryptochrome (CRY) blue light receptors to modulate growth and the circadian clock in plants and animals. However, how CRYs interpret light quantity to regulate growth in plants remains poorly understood. Furthermore, CRY2 protein levels and activity are tightly regulated in light to fine-tune hypocotyl growth; however, details of the mechanisms that explain precise control of CRY2 levels are not fully understood.
View Article and Find Full Text PDFShade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade-avoidance response (SAR), comes at a cost: reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root growth repression is not well understood.
View Article and Find Full Text PDFThe first exposure to light marks a crucial transition in plant development. This transition relies on the transcription factor HY5 controlling a complex downstream growth program. Despite its importance, its function in transcription remains unclear.
View Article and Find Full Text PDFTransport networks serve critical functions in biological and engineered systems, and yet their design requires trade-offs between competing objectives. Due to their sessile lifestyle, plants need to optimize their architecture to efficiently acquire and distribute resources while also minimizing costs in building infrastructure. To understand how plants resolve this design trade-off, we used high-precision three-dimensional laser scanning to map the architectures of tomato, tobacco, or sorghum plants grown in several environmental conditions and through multiple developmental time points, scanning in total 505 architectures from 37 plants.
View Article and Find Full Text PDFPlant architectures can be characterized statistically by their spatial density function, which specifies the probability of finding a branch at each location in the territory occupied by a plant. Using high-precision 3D scanning, we analyzed 557 plant shoot architectures, representing three species, grown across three to five environmental conditions, and through 20-30 developmental time points. We found two elegant properties in the spatial density functions of these architectures: all functions could be nearly modified in one direction without affecting the density in orthogonal directions (called "separability"), and all functions shared the same underlying shape, aside from stretching and compression (called "self-similarity").
View Article and Find Full Text PDFSun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5.
View Article and Find Full Text PDFLight regulates major plant developmental transitions by orchestrating a series of nuclear events. This study uncovers the molecular function of the natural variant, TZP (Tandem Zinc-finger-Plus3), as a signal integrator of light and photoperiodic pathways in transcriptional nuclear foci. We report that TZP acts as a positive regulator of photoperiodic flowering via physical interactions with the red-light receptor phytochrome B (phyB).
View Article and Find Full Text PDFPlants sense neighbor proximity as a decrease in the ratio of red to far-red light, which triggers a series of developmental responses. In Arabidopsis, phytochrome B (PHYB) is the major sensor of shade, but PHYB excitation has not been linked directly to a growth response. We show that the basic helix-loop-helix (bHLH) transcription factor PIF7 (phytochrome-interacting factor 7), an interactor of PHYB, accumulates in its dephosphorylated form in shade, allowing it to bind auxin biosynthetic genes and increase their expression.
View Article and Find Full Text PDFPlant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3).
View Article and Find Full Text PDFPlants respond to a reduction in the red/far-red ratio (R:FR) of light, caused by the proximity of other plants, by initiating morphological changes that improve light capture. In Arabidopsis, this response (shade avoidance syndrome, SAS) is controlled by phytochromes (particularly phyB), and is dependent on the TAA1 pathway of auxin biosynthesis. However, when grown in real canopies, we found that phyB mutants and mutants deficient in TAAI (sav3) still display robust SAS responses to increased planting density and leaf shading.
View Article and Find Full Text PDFPlants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction.
View Article and Find Full Text PDFPhototropism, or the directional growth (curvature) of various organs toward or away from incident light, represents a ubiquitous adaptive response within the plant kingdom. This response is initiated through the sensing of directional blue light (BL) by a small family of photoreceptors known as the phototropins. Of the two phototropins present in the model plant Arabidopsis thaliana, phot1 (phototropin 1) is the dominant receptor controlling phototropism.
View Article and Find Full Text PDFPhototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism.
View Article and Find Full Text PDFIn an attempt to compensate for their sessile nature, plants have developed growth responses to deal with the copious and rapid changes in their environment. These responses are known as tropisms and they are marked by a directional growth response that is the result of differential cellular growth and development in response to an external stimulation such as light, gravity or touch. While the mechanics of tropic growth and subsequent development have been the topic of debate for more than a hundred years, only recently have researchers been able to make strides in understanding how plants perceive and respond to tropic stimulations, thanks in large part to mutant analysis and recent advances in genomics.
View Article and Find Full Text PDF