The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood.
View Article and Find Full Text PDFFailure in the structural maintenance of the hair cell stereocilia bundle and ribbon synapse causes hearing loss. Here, we have studied how ER stress elicits hair cell pathology, using mouse models with inactivation of (mesencephalic astrocyte-derived neurotrophic factor), encoding an ER-homeostasis-promoting protein. From hearing onset, deficiency caused disarray of the outer hair cell stereocilia bundle and reduced cochlear sound amplification capability throughout the tonotopic axis.
View Article and Find Full Text PDFIntroduction: Tinnitus can become a strong stressor for some individuals, leading to imbalance of the autonomous nervous system with reduction of parasympathetic activity. It can manifest itself as sleep disturbances, anxiety and even depression. This condition can be reversed by bioelectrical vagal nerve stimulation (VNS).
View Article and Find Full Text PDFThe non-conventional neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that promotes ER homeostasis. MANF has a cytoprotective function, shown in the central nervous system neurons and pancreatic beta cells. Here, we report that MANF is expressed in the hair cells and neurons and in selected non-sensory cells of the cochlea and that Manf inactivation triggers upregulation of the ER chaperones in these cells.
View Article and Find Full Text PDFVarious stressors, such as loud sounds and the effects of aging, impair the function and viability of the cochlear sensory cells, the hair cells. Stressors trigger pathophysiological changes in the cochlear non-sensory cells as well. We have here studied the stress response mounted in the lateral wall of the cochlea during acute noise stress and during age-related chronic stress.
View Article and Find Full Text PDFWound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood.
View Article and Find Full Text PDFConclusion: Music-induced acute acoustic trauma is not inevitably linked to hearing dysfunction as validated by conventional pure tone audiometry. Tinnitus is often in combination with hyperacusis. Our results point at 'silent hearing loss' as the underlying pathology, having afferent nerve terminal damage rather than hair cell loss as the structural correlate.
View Article and Find Full Text PDFConclusion: Transcutaneous vagal nerve stimulation (tVNS) might offer a targeted, patient-friendly, and low-cost therapeutic tool for tinnitus patients with sympathovagal imbalance.
Objectives: Conventionally, VNS has been performed to treat severe epilepsy and depression with an electrode implanted to the cervical trunk of vagus nerve. This study investigated the acute effects of tVNS on autonomic nervous system (ANS) imbalance, which often occurs in patients with tinnitus-triggered stress.
Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation.
View Article and Find Full Text PDFHair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle.
View Article and Find Full Text PDFHair cell death is a major cause of hearing impairment. Preservation of surface barrier upon hair cell loss is critical to prevent leakage of potassium-rich endolymph into the organ of Corti and to prevent expansion of cellular damage. Understanding of wound healing in this cytoarchitecturally complex organ requires ultrastructural 3D visualization.
View Article and Find Full Text PDFSupporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling.
View Article and Find Full Text PDFSemin Cell Dev Biol
May 2013
Cell cycle exit and acquirement of a postmitotic state is essential for the proper development of organs. In the present review, we examine the role of the cell cycle control in the sensory epithelia of the mammalian inner ear. We describe the roles of the core cell cycle regulators in the proliferation of prosensory cells and in the initiation and maintenance of terminal mitosis of the sensory epithelia.
View Article and Find Full Text PDFCdc42 regulates the initial establishment of cytoskeletal and junctional structures, but only little is known about its role at later stages of cellular differentiation. We studied Cdc42's role in vivo in auditory supporting cells, epithelial cells with high structural complexity. Cdc42 inactivation was induced early postnatally using the Cdc42(loxP/loxP);Fgfr3-iCre-ER(T2) mice.
View Article and Find Full Text PDFConclusions: This pilot study shows that transcutaneous vagus nerve stimulation (tVNS), if combined with sound therapy (ST), reduces the severity of tinnitus and tinnitus-associated distress. Our magnetoencephalography (MEG) results show that auditory cortical activation can be modulated by the application of tVNS. Thus, tVNS might offer a new avenue to treat tinnitus and tinnitus-associated distress.
View Article and Find Full Text PDFSensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation.
View Article and Find Full Text PDFPrevious studies have shown that the maintenance of post-mitotic state is critical for the life-long survival of the inner ear mechanosensory cells, the hair cells. A general concept is that differentiated, post-mitotic cells rapidly die following cell cycle re-entry. Here we have compared the response of postnatal cochlear (auditory) and utricular (balance) hair cells to forced cell cycle reactivation and p53 up-regulation.
View Article and Find Full Text PDFSensory hair cells and supporting cells of the mammalian cochlea and vestibular (balance) organs exit the cell cycle during embryogenesis and do not proliferate thereafter. Here, we have studied the mechanisms underlying the maintenance of the postmitotic state and the proliferative capacity of these cells. We provide the first evidence of the role of cyclin D1 in cell cycle regulation in these cells.
View Article and Find Full Text PDFInner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival.
View Article and Find Full Text PDFCD2-associated protein (CD2AP) is an adapter protein that is involved in various signaling and vesicular trafficking processes and also functions as a linker between plasma membrane proteins and the actin cytoskeleton. The protein is known to have important functions in T cells and glomerular podocytes, but it is also expressed by many other adult-type tissues and cells. Here we analyzed the expression of the protein during early embryonic development and organogenesis of the mouse.
View Article and Find Full Text PDFConclusion: In occupational noise-induced hearing loss (NIHL) reports, many tinnitus sufferers probably remain undetected and untreated at present. Attention should be focused on tinnitus, as well as threshold shifts resulting from NIHL.
Objectives: Occupational NIHL is frequent among workers in industrialized countries and it is one of the greatest occupational health hazards.
Sensory hair cells of the auditory organ are generated during embryogenesis and remain postmitotic throughout life. Previous work has shown that inactivation of the cyclin-dependent kinase inhibitor (CKI) p19(Ink4d) leads to progressive hearing loss attributable to inappropriate DNA replication and subsequent apoptosis of hair cells. Here we show the synergistic action of another CKI, p21(Cip1), on cell cycle reactivation.
View Article and Find Full Text PDFPrecursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells.
View Article and Find Full Text PDFThe mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme.
View Article and Find Full Text PDF