Publications by authors named "Ulla Milbreta"

The demand for eco-friendly packaging materials has urged researchers to look for alternatives to petroleum-based polymers. In this regard, paper-based products have turned out to be a promising choice; however, their weak resistance to water has limited their application. The use of various additives to enhance paper's moisture resistance is a common practice.

View Article and Find Full Text PDF

A major bottleneck in drug/gene delivery to enhance tissue regeneration after injuries is to achieve targeted delivery to the cells of interest. Unfortunately, we have not been able to attain effective targeted drug delivery in tissues due to the lack of efficient delivery platforms. Since specific cell-cell interactions exist to impart the unique structure and functionality of tissues and organs, we hypothesize that such specific cellular interactions may also be harnessed for drug delivery applications in the form of cell membrane coatings.

View Article and Find Full Text PDF

Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries.

View Article and Find Full Text PDF

Current treatment approaches toward spinal cord injuries (SCI) have mainly focused on overcoming the inhibitory microenvironment that surrounds lesion sites. Unfortunately, the mere modulation of the cell/tissue microenvironment is often insufficient to achieve desired functional recovery. Therefore, stimulating the intrinsic growth ability of injured neurons becomes crucial.

View Article and Find Full Text PDF

Neurons of the central nervous system do not regenerate spontaneously after injury. As such, biofunctional tissue scaffolds have been explored to provide a growth-promoting environment to enhance neural regeneration. In this regard, aligned electrospun fibers have proven invaluable for regeneration by offering guidance for axons to cross the injury site.

View Article and Find Full Text PDF

Biomedical implant failure due to the host's response remains a challenging problem. In particular, the formation of the fibrous capsule is a common barrier for the normal function of implants. Currently, there is mounting evidence indicating that the polarization state of macrophages plays an important role in effecting the foreign body reaction (FBR).

View Article and Find Full Text PDF

Clinically, rehabilitation is one of the most common treatment options for traumatic injuries. Despite that, recovery remains suboptimal and recent breakthroughs in regenerative approaches may potentially improve clinical outcomes. To date, there have been numerous studies on the utilization of either rehabilitative or regenerative strategies for traumatic injury treatment.

View Article and Find Full Text PDF

MicroRNAs effectively modulate protein expression and cellular response. Unfortunately, the lack of robust nonviral delivery platforms has limited the therapeutic application of microRNAs. Additionally, there is a shortage of drug-screening platforms that are directly translatable from in vitro to in vivo.

View Article and Find Full Text PDF

The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a traumatic event which leads to the loss of sensory and motor functions of the body. Complete recovery of these functions are usually limited due to the inability of the damaged axons within the central nervous system (CNS) to regenerate autonomously. Here, a combinatorial regenerative and rehabilitative approach to regrow damaged axons was proposed.

View Article and Find Full Text PDF

Unlabelled: A low toxicity and efficient delivery system is needed to deliver small interfering RNAs (siRNA) in vitro and in vivo. The use of mesoporous silica nanoparticles (MSN) is becoming increasingly common due to its biocompatibility, tunable pore size and customizable properties. However, bolus delivery of siRNA/MSN complexes remains suboptimal, especially when a sustained and long-term administration is required.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) are followed by a complex series of events that contribute to the failure of regeneration. To date, there is no robust treatment that can restore the injury-induced loss of function. Since damaged spinal axons do not spontaneously regenerate in their native inhibitory microenvironment, a combined application of biomaterials and neurotrophic factors that induce nerve regeneration emerges as an attractive treatment for SCIs.

View Article and Find Full Text PDF

Remyelination in the central nervous system (CNS) is critical in the treatment of many neural pathological conditions. Unfortunately, the ability to direct and enhance oligodendrocyte (OL) differentiation and maturation remains limited. It is known that microenvironmental signals, such as substrate topography and biochemical signaling, regulate cell fate commitment.

View Article and Find Full Text PDF

Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are common, heritable, but genetically heterogeneous neurodevelopmental conditions. We recently defined a susceptibility locus for ASDs on chromosome 1q41-q42. High-resolution single-nucleotide polymorphisms (126 SNPs) genotyping across the chromosome 1q41-q42 region, followed by a MARK1 (microtubule affinity-regulating kinase 1)-tagged-SNP association study in 276 families with autism from the Autism Genetic Research Exchange, showed that several SNPs within the MARK1 gene were significantly associated with ASDs by transmission disequilibrium tests.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: