Publications by authors named "Ulla Magdolen"

PAI-1 modulates many biological processes involving fibrinolysis, cell migration or tissue remodelling. In addition to inhibiting serine proteases (mainly tPA and uPA), PAI-1 interacts with vitronectin (Vn), fibrin or alpha(1)-acid glycoprotein, interactions which are important for PAI-1-mediated effects in inflammation, tumor invasion and metastasis. To further identify proteins interacting with PAI-1, the yeast two-hybrid strategy was employed.

View Article and Find Full Text PDF

In orthopedic surgery, reconstruction of bone segments afflicted with cancer is done in various ways, including devitalization of the bone or replacement of the bone by artificial bone constructs. To devitalize bone cells, extracorporal irradiation or autoclaving is used although both methods have substantial disadvantages. We now introduce the technique of extracorporal high hydrostatic pressure (HHP) treatment to disintegrate tumor cells in suspension or in their adherent state.

View Article and Find Full Text PDF

Several proteolytic systems are involved in (anti)adhesive, migratory, and proteolytic processes, necessary for tumor progression and metastasis. We analyzed whether multifunctional inhibitors of different tumor-associated proteolytic systems reduce tumor growth and spread of human ovarian cancer cells in vivo. Bifunctional inhibitors are composed of the N-terminal domain of either the human matrix metalloproteinase inhibitors TIMP-1 or TIMP-3 and the cysteine protease inhibitor chicken cystatin (chCysWT); trifunctional inhibitors are composed of N-TIMP-1 or -3 and a chicken cystatin variant harboring the uPAR binding site of uPA, chCys-uPA19-31, which in addition to its inhibitory activity toward cysteine proteases interferes with the interaction of the serine protease uPA with its receptor.

View Article and Find Full Text PDF

Serine proteases, cysteine proteases, and matrix metalloproteinases (MMPs) are involved in cancer cell invasion and metastasis. Recently, a recombinant bifunctional inhibitor (chCys-uPA19-31) directed against cysteine proteases and the urokinase-type plasminogen activator (uPA)/plasmin serine protease system was generated by introducing the uPA receptor (uPAR)-binding site of uPA into chicken cystatin (chCysWT). In the present study, we designed and recombinantly produced multifunctional inhibitors also targeting MMPs.

View Article and Find Full Text PDF

Tumor cell invasion and metastasis depend on the coordinated and temporal expression of proteolytic enzymes to degrade the surrounding extracellular matrix and of adhesion molecules to remodel cell-cell and/or cell-matrix attachments. The tumor cell-associated urokinase-type plasminogen activator system, consisting of the serine protease uPA, its substrate plasminogen, its membrane-bound receptor uPAR, as well as its inhibitors PAI-1 and PAI-2, plays an important role in these pericellular processes. Especially, association of the proteolytic activity of uPA with the cell surface via interaction with uPAR significantly increases the invasive capacity of tumor cells.

View Article and Find Full Text PDF