Machine Learning (ML) algorithms have been important tools for the extraction of useful knowledge from biological sequences, particularly in healthcare, agriculture, and the environment. However, the categorical and unstructured nature of these sequences requiring usually additional feature engineering steps, before an ML algorithm can be efficiently applied. The addition of these steps to the ML algorithm creates a processing pipeline, known as end-to-end ML.
View Article and Find Full Text PDFRecent technological advances have led to an exponential expansion of biological sequence data and extraction of meaningful information through Machine Learning (ML) algorithms. This knowledge has improved the understanding of mechanisms related to several fatal diseases, e.g.
View Article and Find Full Text PDFAims: How benzene is metabolized by microbes under anoxic conditions is not fully understood. Here, we studied the degradation pathways in a benzene-mineralizing, nitrate-reducing enrichment culture.
Methods And Results: Benzene mineralization was dependent on the presence of nitrate and correlated to the enrichment of a Peptococcaceae phylotype only distantly related to known anaerobic benzene degraders of this family.
Deadwood represents significant carbon (C) stock in a temperate forests. Its decomposition and C mobilization is accomplished by decomposer microorganisms - fungi and bacteria - who also supply the foodweb of commensalist microbes. Due to the ecosystem-level importance of deadwood habitat as a C and nutrient stock with significant nitrogen fixation, the deadwood microbiome composition and function are critical to understanding the microbial processes related to its decomposition.
View Article and Find Full Text PDFA key question in microbial ecology is what the driving forces behind the persistence of large biodiversity in natural environments are. We studied a microbial community with more than 100 different types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatranscriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are candidates to degrade benzene.
View Article and Find Full Text PDFHigh-temperature aquifer thermal energy storage (HT-ATES) is a promising technique to reduce the CO2 footprint of heat supply in the frame of transitioning to renewable energies. However, HT-ATES causes temperature fluctuations in groundwater ecosystems potentially affecting important microbial-mediated ecosystem services. Hence, assessing the impact of increasing temperatures on the structure and functioning of aquifer microbiomes is crucial to evaluate potential environmental risks associated with HT-ATES.
View Article and Find Full Text PDFPlasmid transfers among bacterial populations can directly influence the ecological adaptation of these populations and their interactions with host species and environment. In this study, we developed a selective multiply-primed rolling circle amplification (smRCA) approach to enrich and characterize circular plasmid DNA from sponge microbial symbionts via high-throughput sequencing (HTS). DNA (plasmid and total community DNA) obtained from sponge (Cinachyrella sp.
View Article and Find Full Text PDFWe report three metagenome-assembled genomes (MAGs) of strains from coastal seawater (Portugal) to help illuminate the functions of understudied bacteria in marine environments. The MAGs encode proteins involved in aerobic anoxygenic photosynthesis and a versatile carbohydrate metabolism, strengthening the role of species in oceanic carbon cycling.
View Article and Find Full Text PDFMicrobiome studies focused on the genetic potential of microbial communities (metagenomics) became standard within microbial ecology. MG-RAST and the Sequence Read Archive (SRA), the two main metagenome repositories, contain over 202 858 public available metagenomes and this number has increased exponentially. However, mining databases can be challenging due to misannotated, misleading and decentralized data.
View Article and Find Full Text PDFLindane, the γ-hexachlorocyclohexane (HCH) isomer, was among the most used pesticides worldwide. Although it was banned in 2009, residues of Lindane and other HCH-isomers are still found with high concentrations in contaminated fields. For clean-up, phytoremediation combined with anaerobic digestion (AD) of contaminated biomass to produce biogas and fertilizer could be a promising strategy and was tested in two 15 L laboratory-scale continuous stirred tank reactors.
View Article and Find Full Text PDFBackground: The emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer activities.
View Article and Find Full Text PDFMarine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family.
View Article and Find Full Text PDFLike all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem.
View Article and Find Full Text PDF