In this work, the passivation and localized corrosion of selective laser melted (SLM) stainless steel 316 L when exposed to high pressures of CO with the presence of HS and Cl at 25 °C and 125 °C were studied. Depletion of Cr/Mo was observed at the cell interiors and melt-pool boundaries (MPBs) compared to the cell boundaries. Volta potential differences obtained from scanning Kelvin probe force microscopy (SKPFM) showed that the MPBs were 8-20 mV lower than the matrix, while the cell interiors were 20-50 mV lower than the cell boundaries.
View Article and Find Full Text PDFCorrosion of steel-reinforced concrete exposed to marine environments could lead to structural catastrophic failure in service. Hence, the construction industry is seeking novel corrosion preventive methods that are effective, cheap, and non-toxic. In this regard, the inhibitive properties of sodium phosphate (NaPO) corrosion inhibitor have been investigated for carbon steel reinforcements in 0.
View Article and Find Full Text PDFThe corrosion inhibition mechanism of soluble phosphates on steel reinforcement embedded in mortar fabricated with ordinary Portland cement (OPC) are reviewed. This review focuses soluble phosphate compounds, sodium monofluorophosphate (NaPOF) (MFP), disodium hydrogen phosphate (NaHPO) (DHP) and trisodium phosphate (NaPO) (TSP), embedded in mortar. Phosphate corrosion inhibitors have been deployed in two different ways, as migrating corrosion inhibitors (MCI), or as admixed corrosion inhibitors (ACI).
View Article and Find Full Text PDFThe corrosion behavior of austenitic Fe-Mn-Al-Cr-C twinning-induced plasticity (TWIP) and microband-induced plasticity (MBIP) steels with different alloying elements ranging from 22.6-30 wt.% Mn, 5.
View Article and Find Full Text PDFHerein, pH-sensitive microcapsules containing NaNO corrosion inhibitors for protection of steel reinforced concrete were synthesized via water-in-oil-in-water (W/O/W) double emulsion using colophony as the wall material. The average microcapsule size was 79.07 μm in diameter and exhibited a high encapsulation efficiency of 83.
View Article and Find Full Text PDF