Publications by authors named "Uli Maier"

Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants).

View Article and Find Full Text PDF

Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface.

View Article and Find Full Text PDF

For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.

View Article and Find Full Text PDF

A field experiment was performed in a sandy vadose zone, studying the fate of an emplaced fuel-NAPL source, composed of 13 hydrocarbons and a tracer. The UNIFAC model was used to testthe nonideal behavior of the source, and the numerical model MIN3P was used for assessing the effect of biodegradation on source evolution. The diffusive loss to the surrounding vadose zone and the atmosphere created temporary gradients in mole fractions of the individual compounds within the source NAPL.

View Article and Find Full Text PDF