Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.
View Article and Find Full Text PDFEquation of state measurements at Jovian or stellar conditions are currently conducted by dynamic shock compression driven by multi-kilojoule multi-beam nanosecond-duration lasers. These experiments require precise design of the target and specific tailoring of the spatial and temporal laser profiles to reach the highest pressures. At the same time, the studies are limited by the low repetition rate of the lasers.
View Article and Find Full Text PDFHere we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm per pulse when irradiated with a sequence of 1-100 pulses (t ∼ 20 fs, E = 9 keV).
View Article and Find Full Text PDFAn experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤10 s), where up to 352 diffraction images can be collected from a single pulse train.
View Article and Find Full Text PDFA von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution.
View Article and Find Full Text PDFThe application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy.
View Article and Find Full Text PDFUltrafast optical excitation of matter leads to highly excited states that are far from equilibrium. In this study, femtosecond x-ray absorption spectroscopy was used to visualize the ultrafast dynamics in photoexcited warm dense Cu. The rich dynamical features related to d vacancies are observed on femtosecond timescales.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2021
The European XFEL delivers up to 27000 intense (>10 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument.
View Article and Find Full Text PDFSynchrotrons and free electron lasers are unique facilities to probe the atomic structure and electronic properties of matter at extreme thermodynamical conditions. In this context, 'matter at extreme pressures and temperatures' was one of the science drivers for the construction of low emittance 4th generation synchrotron sources such as the Extremely Brilliant Source of the European Synchrotron Radiation Facility and hard x-ray free electron lasers, such as the European x-ray free electron laser. These new user facilities combine static high pressure and dynamic shock compression experiments to outstanding high brilliance and submicron beams.
View Article and Find Full Text PDFThe ultrafast synthesis of ε-FeN in a diamond-anvil cell (DAC) from Fe and N under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by transformation of α- to γ-iron. Ultimately, the Fe and N reacted uniformly throughout the beam path to form FeN, as deduced from its established equation of state (EOS).
View Article and Find Full Text PDFSiO is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 M). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P4/mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g.
View Article and Find Full Text PDFThe advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging.
View Article and Find Full Text PDFThe LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.
View Article and Find Full Text PDFWe present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.
View Article and Find Full Text PDFWe present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs.
View Article and Find Full Text PDFThe emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused.
View Article and Find Full Text PDF