Chronic severe facial pain is a feared sequel of cranial base surgery. This study explores the symptomatology, incidence and impact on the individual of postoperative de novo trigeminal nerve affection as well as the recovery potential. Out of 231 patients operated for cranial base meningiomas at the Karolinska University Hospital during 7 years, 25 complained of de novo trigeminal symptoms at clinical follow-up 3 months after surgery.
View Article and Find Full Text PDFObjective: The discovery of stem cells in the adult human brain and developing stem cell technology open a possible future scenario of autotransplantation, where stem cells are harvested from the patient and propagated in vitro before they are used as transplants. The objectives of this study were: 1) to investigate the feasibility of harvesting tissue containing neural stem cells by endoscopy; 2) to study the possibility of propagating and multiplying stem cells from this tissue efficiently in vitro; and 3) to examine whether the stem cells differentiate into functional neurons.
Methods: In 13 patients with hydrocephalus undergoing routine neurosurgical procedures, we used an endoscope and a 3-mm biopsy forceps (Medtronic) to harvest the small piece of the ventricular wall that is detached by the introduction of the endoscope.
The development of clinically relevant larger spinal cord injury models is in part limited by the possibility of a widened or multilevel laminectomy causing a spinal cord injury from an unstable spine or from compression of the spinal cord by adjacent soft tissues. In the adult rat, we have developed a method to protect the spinal cord and stabilize the spinal column using a titanium mesh implant following a bilateral, multilevel lumbar laminectomy. For this purpose, bilateral and expanded L1-4 laminectomies were performed with or without the use of a titanium mesh to protect the spinal cord and stabilize the spine.
View Article and Find Full Text PDFIt was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies for CNS disorders, either by stimulating neurogenesis in vivo or by transplanting multipotent progenitor cells (MPCs) that have been propagated and differentiated in vitro.
View Article and Find Full Text PDFObjective: It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies, however, have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies against central nervous system disorders by transplanting stem cells that have been propagated in vitro.
View Article and Find Full Text PDFGAP-43 is normally produced by neurons during developmental growth and axonal regeneration, but it is also expressed in specific regions of the normal adult nervous system. We studied the protein expression of GAP-43 within the conus medullaris portion of the spinal cord in adult male rats. Immunohistochemistry for choline acetyltransferase (ChAT) was first performed to identify specific efferent autonomic and motor nuclei in lumbosacral segments of the spinal cord.
View Article and Find Full Text PDFBackground: Methylprednisolone (MP) is often used to treat optic nerve injury. However, its effects in experimental crush injury have not been extensively evaluated.
Methods: Adult Sprague-Dawley rats were subjected to a standardized optic nerve crush injury.
J Hematother Stem Cell Res
December 2003
Cellular transplantation therapy is thought to play a central role in the concept of restorative neurosurgery, which aims to restore function to the damaged nervous system. Stem cells represent a potentially renewable source of transplantable cells. However, control of the behavior of these cells, both in the process of clonogenic expansion and post-transplantation, represents formidable challenges.
View Article and Find Full Text PDFRecent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres.
View Article and Find Full Text PDF