I examined hypotheses about lateral transfer of type II antifreeze protein (AFP) genes among "distantly" related teleost fish. The effects of episodic directional selection on amino acid evolution were also investigated. The strict consensus results showed that the type II AFP and type II antifreeze-like protein genes were transferred from Osmerus mordax to Clupea harengus, from the ancestral lineage of the Brachyopsis rostratus-Hemitripterus americanus clade to the ancestor of the Hypomesus nipponensis-Osmerus mordax group and from the ancestral lineage of Brachyopsis rostratus-Hemitripterus americanus-Siniperca chuatsi-Perca flavescens to Perca flavescens.
View Article and Find Full Text PDFHypotheses about horizontal transfer of antifreeze protein genes to ice-living diatoms were addressed using two different statistical methods available in the program Prunier. The role of diversifying selection in driving the differentiation of a set of antifreeze protein genes in the diatom genus Fragilariopsis was also investigated. Four horizontal gene transfer events were identified.
View Article and Find Full Text PDFA Bayesian analysis of a seven gene data set was conducted to reconstruct phylogenetic relationships among a sample of centric and pennate diatoms and to test alternative hypotheses about the closest living relative of Bacillariophyceae. A lineage, composed of two Attheya species, was inferred to share the most recent common ancestor with Bacillariophyceae--a relationship that was also corroborated by the combined parsimony analysis. All competing hypotheses about the closest living relative of Bacillariophyceae were rejected because 100% of the trees in the post-burn-in sample in the Bayesian analysis supported the Attheya-Bacillariophyceae clade.
View Article and Find Full Text PDFBackground: Stramenopiles constitute a large and diverse eukaryotic clade that is currently poorly characterized from both phylogenetic and temporal perspectives at deeper taxonomic levels. To better understand this group, and in particular the photosynthetic stramenopiles (Ochrophyta), we analyzed sequence data from 135 taxa representing most major lineages. Our analytical approach utilized several recently developed methods that more realistically model the temporal evolutionary process.
View Article and Find Full Text PDFIn this study five different molecular markers were used to: (1) infer the phylogeographic differentiation of Thalassiosira weissflogii in the Atlantic and Pacific Oceans; and (2) address the biological species status of the inferred geographic lineages. The results of the ribosomal RNA data analyses suggested that the Hawaiian isolate evolved first after which the Indonesian and the Atlantic/California strains diverged. In contrast, the tree derived from the partial sexually induced gene 1 (Sig1) data exhibited an initial divergence between the Eastern Atlantic/Western Atlantic/California and the Hawaiian/Indonesian groups after which the latter evolved into the Hawaiian and Indonesian lineages.
View Article and Find Full Text PDFDiatoms are the dominant group of phytoplankton in the modern ocean. They account for approximately 40% of oceanic primary productivity and over 50% of organic carbon burial in marine sediments. Owing to their role as a biological carbon pump and effects on atmospheric CO(2) levels, there is great interest in elucidating factors that influenced the rapid rise in diatom diversity during the past 40 million years.
View Article and Find Full Text PDFSingle likelihood ancestor counting (SLAC), fixed effects likelihood (FEL), and several random effects likelihood (REL) methods were utilized to identify positively and negatively selected sites in sexually induced gene 1 (Sig1) of four different Thalassiosira species. The SLAC analysis did not find any sites affected by positive selection but suggested 13 sites influenced by negative selection. The SLAC approach may be too conservative because of low sequence divergence.
View Article and Find Full Text PDFDirect optimization (DO) of 126 nuclear-encoded SSU rRNA diatom sequences was conducted. The optimal phylogeny indicated several unique relationships with respect to those recovered from a maximum likelihood (ML) analysis of an alignment based on maximizing primary and secondary structural similarity between 126 nuclear-encoded SSU rRNA diatom sequences (Medlin and Kaczmarska, 2004). Dividing diatoms into the subdivisions Coscinodiscophytina and Bacillariophytina was not supported by the DO phylogeny, due to the paraphyly of the former.
View Article and Find Full Text PDFThe aim of this study was to compare the usefulness of two chloroplast-encoded genes (rpoA and rbcL) and the nuclear-encoded small subunit (SSU) ribosomal RNA for reconstructing phylogenetic relationships among diatoms at lower taxonomic levels. To this end, the rpoA and rbcL genes for selected centric and pennate diatoms were sequenced. The new rpoA and rbcL sequences, and an existing nuclear-encoded SSU rRNA data set, were subjected to weighted/unweighted parsimony, maximum likelihood, minimum evolution, and Bayesian analyses.
View Article and Find Full Text PDFMaximum-Likelihood-based and parsimony-based methods were used to test for potential effects of positive selection on the sexually induced gene 1 (Sig1) in Thalassiosira weissflogii. The Sig proteins are thought to play a role in mediating sperm-egg recognition during the sexual reproduction phase. The results obtained from parsimony-based analyses showed that none of the amino acid sites were influenced by positive selection.
View Article and Find Full Text PDFMol Phylogenet Evol
July 2002
Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants.
View Article and Find Full Text PDFPhylogenetic relationships among the nine major autotrophic stramenopile taxa were inferred in a combined analysis of the rbcL, SSU rDNA, partial LSU rRNA, carotenoid, and ultrastructural data sets. The structure of the shortest combined tree is: (Outgroup, ((((Bacillariophyceae, (Pelagophyceae, Dictyochophyceae)),((Phaeophyceae, Xanthophyceae), Raphidophyceae)), Eustigmatophyceae),(Chrysophyceae, Synurophyceae))). The Synurophyceae/Chrysophyceae is the best supported group followed by the Phaeophyceae/Xanthophyceae and the Pelagophyceae/Dictyochophyceae clades.
View Article and Find Full Text PDF