Publications by authors named "Ulf Skyllberg"

Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear.

View Article and Find Full Text PDF

The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially across contrasting aquatic systems and dictates MeHg speciation and bioavailability to phytoplankton.

View Article and Find Full Text PDF

Sulfide ions are regarded to be toxic to microorganisms in engineered methanogenic systems (EMS), where organic substances are anaerobically converted to products such as methane, hydrogen, alcohols, and carboxylic acids. A vast body of research has addressed solutions to mitigate process disturbances associated with high sulfide levels, yet the established paradigm has drawn the attention away from the multifaceted sulfide interactions with minerals, organics, microbial interfaces and their implications for performance of EMS. This brief review brings forward sulfide-derived pathways other than toxicity and with potential significance for anaerobic organic matter degradation.

View Article and Find Full Text PDF

The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by . We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations.

View Article and Find Full Text PDF

Low-molecular-mass (LMM) thiol compounds are known to be important for many biological processes in various organisms but LMM thiols are understudied in anaerobic bacteria. In this work, we examined the production and turnover of nanomolar concentrations of LMM thiols with a chemical structure related to cysteine by the model iron-reducing bacterium . Our results show that tightly controls the production, excretion and intracellular concentration of thiols depending on cellular growth state and external conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Peatlands are significant contributors of methylmercury (MeHg) to nearby water systems, raising concerns for both human and wildlife health due to its toxicity.
  • This study examined how microbial communities in peatlands relate to MeHg production by studying microbial composition and gene activity across different stages of peatland development.
  • Results indicated that certain microbial groups positively influenced MeHg formation, while others showed a negative correlation, helping to clarify the complex relationships between microorganisms and mercury cycling in peatlands.
View Article and Find Full Text PDF

Sediments represent the main reservoir of mercury (Hg) in aquatic environments and may act as a source of Hg to aquatic food webs. Yet, accumulation routes of Hg from the sediment to benthic organisms are poorly constrained. We studied the bioaccumulation of inorganic and methylmercury (Hg and MeHg, respectively) from different geochemical pools of Hg into four groups of benthic invertebrates (amphipods, polychaetes, chironomids, and bivalves).

View Article and Find Full Text PDF

Atmosphere-surface exchange of elemental mercury (Hg(0)) is a vital component in global Hg cycling; however, Hg isotope fractionation remains largely unknown. Here, we report Hg isotope fractionation during air-surface exchange from terrestrial surfaces at sites of background (two) and urban (two) character and at five sites contaminated by Hg mining. Atmospheric Hg(0) deposition to soils followed kinetic isotope fractionation with a mass-dependent (MDF) enrichment factor of -4.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a neurotoxin formed from inorganic divalent mercury (Hg) via microbial methylation, and boreal wetlands have been identified as major sources of MeHg. There is however a lack of studies investigating the relationship between the chemical speciation of Hg and MeHg formation in such environments, in particular regarding to role of thiol compounds. We determined Hg methylation potentials, k, in boreal wetland soils using two Hg isotope tracers: Hg(OH)(aq) and Hg bonded to thiol groups in natural organic matter, Hg-NOM(ads), representing Hg sources with high and low availability for methylation.

View Article and Find Full Text PDF

Wetlands are common sites of active Hg methylation by anaerobic microbes; however, the amount of methylmercury produced varies greatly, as Hg methylation is dependent upon both the availability of Hg and the composition and activity of the microbial community involved. In this study, we identified the major microbial guilds responsible for Hg methylation along a trophic gradient composed of two sites and three different types of wetlands: a bog-fen peatland gradient and a black alder swamp, serving as net sources and a sink for methylmercury respectively. Iron-reducing bacteria in the Geobacteraceae were important Hg methylators across all wetlands and seasons examined, as evidenced by abundant 16S rRNA and hgcA transcripts clustering with this family.

View Article and Find Full Text PDF

To advance the scientific understanding of bacteria-driven mercury (Hg) transformation processes in natural environments, thermodynamics and kinetics of divalent mercury Hg(II) chemical speciation need to be understood. Based on Hg L-edge extended X-ray absorption fine structure (EXAFS) spectroscopic information, combined with competitive ligand exchange (CLE) experiments, we determined Hg(II) structures and thermodynamic constants for Hg(II) complexes formed with thiol functional groups in bacterial cell membranes of two extensively studied Hg(II) methylating bacteria: PCA and ND132. The Hg EXAFS data suggest that 5% of the total number of membranethiol functionalities (Mem-RS = 380 ± 50 μmol g C) are situated closely enough to be involved in a 2-coordinated Hg(Mem-RS) structure in .

View Article and Find Full Text PDF

We investigated the influence of sulfate (SO) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that increased loading of SO both increases net MeHg formation and redistributes methylmercury (MeHg) from the peat soil to its porewater. Sulfur concentrations in peat soils correlated positively with MeHg concentrations in peat porewater, along the deposition gradient similar to the response to added SO in the experimental field study.

View Article and Find Full Text PDF

Peatlands are abundant elements of boreal landscapes where inorganic mercury (IHg) can be transformed into bioaccumulating and highly toxic methylmercury (MeHg). We studied fifteen peatlands divided into three age classes (young, intermediate and old) along a geographically constrained chronosequence to determine the role of biogeochemical factors and nutrient availability in controlling the formation of MeHg. In the 10 cm soil layer just below the average annual growing season water table, concentrations of MeHg and %MeHg (of total Hg) were higher in younger, more mesotrophic peatlands than in older, more oligotrophic peatlands.

View Article and Find Full Text PDF

Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions.

View Article and Find Full Text PDF

The potential of using gene expression signature as a biomarker of toxicants exposure was explored in the microalga Chlamydomonas reinhardtii exposed 2 h to mercury (Hg) as inorganic mercury (IHg) and methyl mercury (MeHg) in presence of copper (Cu) and Suwannee River Humic Acid (SRHA). Total cellular Hg (THg = IHg + MeHg) decreased in presence of SRHA for 0.7 nM IHg and 0.

View Article and Find Full Text PDF

Cellular uptake of inorganic divalent mercury (Hg(II)) is a key step in microbial formation of neurotoxic methylmercury (MeHg), but the mechanisms remain largely unidentified. We show that the iron reducing bacterium produces and exports appreciable amounts of low molecular mass thiol (LMM-RSH) compounds reaching concentrations of about 100 nM in the assay medium. These compounds largely control the chemical speciation and bioavailability of Hg(II) by the formation of Hg(LMM-RS) complexes (primarily with cysteine) in assays without added thiols.

View Article and Find Full Text PDF

The formation of the potent neurotoxic methylmercury (MeHg) is a microbially mediated process that has raised much concern because MeHg poses threats to wildlife and human health. Since boreal forest soils can be a source of MeHg in aquatic networks, it is crucial to understand the biogeochemical processes involved in the formation of this pollutant. High-throughput sequencing of 16S rRNA and the mercury methyltransferase, hgcA, combined with geochemical characterisation of soils, were used to determine the microbial populations contributing to MeHg formation in forest soils across Sweden.

View Article and Find Full Text PDF

The origin and composition of dissolved organic matter (DOM) in porewater of lake sediments is intricate and decisive for fate of pollutants including mercury (Hg). While there are many reports on the relationship between dissolved organic carbon concentration (DOC) and mercury (Hg) concentrations in aquatic systems, there are few in which DOM compositional properties, that may better explain the fate of Hg, have been the focus. In this study, porewaters from sediments of three lakes, Caihai Lake (CH), Hongfeng Lake (HF) and Wujiangdu Lake (WJD), all located in southwest China, were selected to test the hypothesis that DOM optical properties control the fate of Hg in aquatic ecosystems.

View Article and Find Full Text PDF

Mercury (Hg) remains hazardous in aquatic environments because of its biomagnification in food webs. Nonetheless, Hg uptake and impact in primary producers is still poorly understood. Here, we compared the cellular toxicity of inorganic and methyl Hg (IHg and MeHg, respectively) in the aquatic plant Elodea nuttallii.

View Article and Find Full Text PDF

A molecular level understanding of the thermodynamics and kinetics of the chemical bonding between mercury, Hg(II), and natural organic matter (NOM) associated thiol functional groups (NOM-RSH) is required if bioavailability and transformation processes of Hg in the environment are to be fully understood. This study provides the thermodynamic stability of the Hg(NOM-RS) structure using a robust method in which cysteine (Cys) served as a competing ligand to NOM (Suwannee River 2R101N sample) associated RSH groups. The concentration of the latter was quantified to be 7.

View Article and Find Full Text PDF

Earlier studies have shown that boreal forest logging can increase the concentration and export of methylmercury (MeHg) in stream runoff. Here we test whether forestry operations create soil environments of high MeHg net formation associated with distinct microbial communities. Furthermore, we test the hypothesis that Hg methylation hotspots are more prone to form after stump harvest than stem-only harvest, because of more severe soil compaction and soil disturbance.

View Article and Find Full Text PDF

Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion.

View Article and Find Full Text PDF

Boreal wetlands have been identified as environments in which inorganic divalent mercury (Hg) is transformed to methylmercury (MeHg) by anaerobic microbes. In order to understand this transformation and the mobility and transport of Hg and MeHg, factors and conditions in control of the solubility and chemical speciation of Hg and MeHg need to be clarified. Here we explore the ability of thermodynamic models to simulate measured solubility of Hg and MeHg in different types of boreal wetland soils.

View Article and Find Full Text PDF

The input of mercury (Hg) to ecosystems is estimated to have increased two- to fivefold during the industrial era, and Hg accumulates in aquatic biota as neurotoxic methylmercury (MeHg). Escalating anthropogenic land use and climate change are expected to alter the input rates of terrestrial natural organic matter (NOM) and nutrients to aquatic ecosystems. For example, climate change has been projected to induce 10 to 50% runoff increases for large coastal regions globally.

View Article and Find Full Text PDF