AlSiC is a ternary wide-band-gap semiconductor with a high strength-to-weight ratio and excellent oxidation resistance. It consists of slabs of AlC separated by SiC layers with the space group of 6. The space group allows Si to occupy two different 2 Wykoff sites, with previous studies reporting that Si occupies only one of the two sites, giving it an ordered structure.
View Article and Find Full Text PDFMnAl(C) is a promising candidate as a rare earth free magnet. When processing MnAl(C) in laser powder bed fusion (L-PBF) the high cooling rates can retain the high temperature ε-phase which can then be annealed at low temperatures to yield the ferromagnetic τ-phase. However, MnAl(C) has been shown to be difficult to print using L-PBF and the material is prone to severe cracking.
View Article and Find Full Text PDFAdditive manufacturing of Cu is interesting for many applications where high thermal and electric conductivity are required. A problem with printing of Cu with a laser-based process is the high reflectance of the powder for near-infrared wavelengths making it difficult to print components with a high density. In this study, we have investigated laser bed fusion (L-PBF) of Cu using graphene oxide (GO)-coated powder.
View Article and Find Full Text PDFOxygen impurities play a crucial role in the glass-forming ability and crystallisation behaviour of metallic glasses. In the present work, single laser tracks were produced on ZrCu AlNbO substrates (x = 0.3, 1.
View Article and Find Full Text PDFBackground: Nephrotic syndrome (NS) is associated with increased risk of venous thromboembolism (VTE). Guidelines suggest prophylactic anticoagulants to patients with high risk of thrombosis and low risk of bleeding, but the evidence behind this is poor. This study aims to investigate the effectiveness and risks of prophylactic anticoagulants (PAC) and investigate risk factors for VTE and bleeding in NS.
View Article and Find Full Text PDFSeveral ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0-37 at.
View Article and Find Full Text PDFIntroduction: A coeliac disease (CD) diagnosis is likely in children with levels of tissue transglutaminase autoantibodies (anti-TG2) >10 times the upper reference value, whereas children with lower anti-TG2 levels need an intestinal biopsy to confirm or rule out CD. A blood sample is easier to obtain than an intestinal biopsy sample, and stabilised blood is suitable for routine diagnostics because transcript levels are preserved at sampling. Therefore, we investigated gene expression in stabilised whole blood to explore the possibility of gene expression-based diagnostics for the diagnosis and follow-up of CD.
View Article and Find Full Text PDFIn this study, we show that the phase formation of HfNbTiVZr high-entropy thin films is strongly influenced by the substrate temperature. Films deposited at room temperature exhibit an amorphous microstructure and are 6.5 GPa hard.
View Article and Find Full Text PDFThe microstructure and distribution of the elements have been studied in thin films of a near-equimolar CrNbTaTiW high entropy alloy (HEA) and films with 8 at.% carbon added to the alloy. The films were deposited by magnetron sputtering at 300°C.
View Article and Find Full Text PDFThe multicomponent alloy HfNbTiVZr has been described as a single-phase high-entropy alloy (HEA) in the literature, although some authors have reported that additional phases can form during annealing. The thermal stability of this alloy has therefore been investigated with a combination of experimental annealing studies and thermodynamic calculations using the CALPHAD approach. The thermodynamic calculations show that a single-phase HEA is stable above about 830 °C.
View Article and Find Full Text PDFEstablishing a celiac disease (CD) diagnosis can be difficult, such as when CD-specific antibody levels are just above cutoff or when small intestinal biopsies show low-grade injuries. To investigate the biological pathways involved in CD and select potential biomarkers to aid in CD diagnosis, RNA sequencing of duodenal biopsies from subjects with either confirmed Active CD (n = 20) or without any signs of CD (n = 20) was performed. Gene enrichment and pathway analysis highlighted contexts, such as immune response, microbial infection, phagocytosis, intestinal barrier function, metabolism, and transportation.
View Article and Find Full Text PDFA high-entropy alloy (HEA) of HfNbTiVZr was synthesized using an arc furnace followed by ball milling. The hydrogen absorption mechanism was studied by in situ X-ray diffraction at different temperatures and by in situ and ex situ neutron diffraction experiments. The body centered cubic (BCC) metal phase undergoes a phase transformation to a body centered tetragonal (BCT) hydride phase with hydrogen occupying both tetrahedral and octahedral interstitial sites in the structure.
View Article and Find Full Text PDFBackground: Genealogy and molecular genetic studies of a Swedish river valley population resulted in a large pedigree, showing that the hereditary hemochromatosis (HH) C282Y mutation is inherited with other recessive disorders such as Wilson´s disease (WND), a rare recessive disorder of copper overload. The population also contain individuals with the Swedish long QT syndrome (LQTS1) founder mutation (/p.Y111C) which in homozygotes causes the Jervell & Lange Nielsen syndrome (JLNS) and hearing loss (HL).
View Article and Find Full Text PDFMetal hydrides (MH) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements.
View Article and Find Full Text PDFA combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way.
View Article and Find Full Text PDFTransition metal diborides in hexagonal AlB2 type structure typically form stable MB2 phases for group IV elements (M = Ti, Zr, Hf). For group V (M = V, Nb, Ta) and group VI (M = Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB2 and its influence on the phase stability and the structure for TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, CrB2, MoB2, and WB2 using first-principles calculations.
View Article and Find Full Text PDFProlonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.
View Article and Find Full Text PDFWe investigate the amorphous structure, chemical bonding, and electrical properties of magnetron sputtered Fe(1-xCx) (0.21 ⩽ x ⩽ 0.72) thin films.
View Article and Find Full Text PDFBackground: Blood-based diagnostics has the potential to simplify the process of diagnosing celiac disease (CD). Although high levels of autoantibodies against tissue transglutaminase (anti-TG2) are strongly indicative of active CD, several other scenarios involve a need for additional blood-based CD markers.
Methods: We investigated the levels of messenger RNA (mRNA) in whole blood (n = 49) and protein in plasma (n = 22) from cases with active CD (n = 20), with confirmed CD and normalized histology (n = 15), and without a CD diagnosis (n = 14).
The crystal structure and chemical bonding of magnetron-sputtering deposited nickel carbide Ni₁-xCx (0.05 ⩽ x⩽0.62) thin films have been investigated by high-resolution x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, and soft x-ray absorption spectroscopy.
View Article and Find Full Text PDFSince the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2012
The microstructure, electronic structure and chemical bonding of chromium carbide thin films with different carbon contents have been investigated with high-resolution transmission electron microscopy, electron energy loss spectroscopy and soft x-ray absorption-emission spectroscopies. Most of the films can be described as amorphous nanocomposites with non-crystalline CrC(x) in an amorphous carbon matrix. At high carbon contents, graphene-like structures are formed in the amorphous carbon matrix.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2011
We have performed first principles density functional theory calculations on TiC alloyed on the Ti sublattice with 3d transition metals ranging from Sc to Zn. The theory is accompanied by experimental investigations, both as regards materials synthesis as well as characterization. Our results show that by dissolving a metal with a weak ability to form carbides, the stability of the alloy is lowered and a driving force for the release of carbon from the carbide is created.
View Article and Find Full Text PDF