We previously demonstrated that the lungs of deceased COVID-19 patients were filled with a clear hydrogel consisting of hyaluronan (HA). In this translational study, we investigated the role of HA at all stages of COVID-19 disease to map the consequences of elevated HA on morbidity and identify the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced HA production. A reduced alveolar surface area was observed in the lungs of deceased COVID-19 patients compared to healthy controls, as visualized by a 3D rendering of lung morphology using light-sheet fluorescence microscopy.
View Article and Find Full Text PDFPancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up.
View Article and Find Full Text PDFViral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI.
View Article and Find Full Text PDFThe rodent pancreas is the prevalent model system for preclinical diabetes research. However, due to the compound endocrine-exocrine organization of the gland, with the endocrine islets of Langerhans scattered by the thousands throughout the much greater exocrine parenchyma, stereological assessments of endocrine cell mass, commonly insulin-producing ß-cells, are exceedingly challenging. In recent years, optical mesoscopic imaging techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) have seen dramatic developments, enabling 3D visualization of fluorescently labeled cells in mm- to cm-sized tissues with μm resolution.
View Article and Find Full Text PDFMouse models for streptozotocin (STZ) induced diabetes probably represent the most widely used systems for preclinical diabetes research, owing to the compound's toxic effect on pancreatic β-cells. However, a comprehensive view of pancreatic β-cell mass distribution subject to STZ administration is lacking. Previous assessments have largely relied on the extrapolation of stereological sections, which provide limited 3D-spatial and quantitative information.
View Article and Find Full Text PDFType 1 diabetes develops in childhood and adolescence, with peak incidence in the early teenage years. There is an urgent need for an accurate method to detect insulin-producing β-cells in patients that is not affected by alterations in β-cell function. As part of our research program to design specific probes to measure β-cell mass, we recently developed a novel insulin-binding peptide probe (IBPP) for the detection of β-cells in vivo.
View Article and Find Full Text PDFThe possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context.
View Article and Find Full Text PDFOpsin 3 () is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an -eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development.
View Article and Find Full Text PDFObjective: Early postnatal life is a critical period for the establishment of the functional β-cell mass that will sustain whole-body glucose homeostasis during the lifetime. β cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2021
Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome.
View Article and Find Full Text PDFTrends Endocrinol Metab
December 2020
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells.
View Article and Find Full Text PDFThe possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with over 90% of the patients dying within 5 years after diagnosis. Cure can be achieved by surgical resection, but the efficiency remains drearily low.
View Article and Find Full Text PDFMouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of β-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced β-cell destruction predominantly affects large islets in the pancreatic core.
View Article and Find Full Text PDFThis article has been retracted; see accompanying Retraction Note, which can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAims/hypothesis: Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available.
Methods: We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry.
Functional beta cell mass is an essential biomarker for the diagnosis and staging of diabetes. It has however proven technically challenging to study this parameter during diabetes progression. Here we have detailed the kinetics of the rapid decline in functional beta cell mass in the RIP-DTR mouse, a model of hyperglycemia resulting from diphtheria toxin induced beta cell ablation.
View Article and Find Full Text PDFDespite the dramatic increase in the prevalence of diabetes, techniques for in situ studies of the underlying pancreatic biochemistry are lacking. Such methods would facilitate obtaining mechanistic understanding of diabetes pathophysiology and aid in prognostic and/or diagnostic assessments. In this report we demonstrate how a multivariate imaging approach (orthogonal projections to latent structures - discriminant analysis) can be applied to generate full vibrational microspectroscopic profiles of pancreatic tissues.
View Article and Find Full Text PDFA detailed understanding of pancreatic β-cell mass distribution is a key element to fully appreciate the pathophysiology of models of diabetes and metabolic stress. Commonly, such assessments have been performed by stereological approaches that rely on the extrapolation of two-dimensional data and provide very limited topological information. We present ex vivo optical tomographic data sets of the full β-cell mass distribution in cohorts of obese ob/ob mice and their lean controls, together with information about individual islet β-cell volumes, their three-dimensional coordinates and shape throughout the volume of the pancreas between 4 and 52 weeks of age.
View Article and Find Full Text PDFThe leptin deficient ob/ob mouse is a widely used model for studies on initial aspects of metabolic disturbances leading to type 2 diabetes, including insulin resistance and obesity. Although it is generally accepted that ob/ob mice display a dramatic increase in β-cell mass to compensate for increased insulin demand, the spatial and quantitative dynamics of β-cell mass distribution in this model has not been assessed by modern optical 3D imaging techniques. We applied optical projection tomography and ultramicroscopy imaging to extract information about individual islet β-cell volumes throughout the volume of ob/ob pancreas between 4 and 52 weeks of age.
View Article and Find Full Text PDFSingle Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multi-organ disorder results from inactivating point mutations in either the TSC1 or the TSC2 genes and consequent activation of the canonical mammalian target of rapamycin complex 1 signalling (mTORC1) pathway. Because lesions to the eye are central to TSC diagnosis, we report here the generation and characterisation of the first eye-specific TSC mouse model.
View Article and Find Full Text PDFBackground: In type 2 diabetes mellitus, there is a progressive loss of beta-cell mass. Bariatric surgery has in recent investigations showed promising results in terms of diabetes remission, but little is established regarding the effect of surgery on the survival or regeneration of pancreatic beta-cells. In this study, we aim to explore how bariatric surgery with its subsequent hormonal alterations affects the islets of Langerhans.
View Article and Find Full Text PDFMice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells.
View Article and Find Full Text PDF