Introduction: The treatment of Cryptococcus neoformans with fluconazole and amphotericin B is, at times, characterised by clinical failure. Therefore, this study sought to re-purpose primaquine (PQ) as an anti-Cryptococcus compound.
Method: The susceptibility profile of some cryptococcal strains towards PQ was determined using EUCAST guidelines, and PQ's mode of action was examined.
To simulate Cryptococcus infection, amoeba, which is the natural predator of cryptococcal cells in the environment, can be used as a model for macrophages. This predatory organism, similar to macrophages, employs phagocytosis to kill internalized cells. With the aid of a confocal laser-scanning microscope, images depicting interactive moments between cryptococcal cells and amoeba are captured.
View Article and Find Full Text PDFWe previously reported that 3-hydroxy fatty acids promoted the survival of cryptococcal cells when acted upon by amoebae. To expand on this, the current study sought to explain how these molecules may protect cells. Our data suggest that 3-hydroxy fatty acids may subvert the internalization of cryptococcal cells via suppression of the levels of a fetuin A-like amoebal protein, which may be important for enhancing phagocytosis.
View Article and Find Full Text PDFWe previously reported on a 3-hydroxy fatty acid that is secreted via cryptococcal capsular protuberances - possibly to promote pathogenesis and survival. Thus, we investigated the role of this molecule in mediating the fate of Cryptococcus (C.) neoformans and the related species C.
View Article and Find Full Text PDF