Background: Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.
Methods: We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available.
View Article and Find Full Text PDFMedical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain.
View Article and Find Full Text PDFResection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM.
View Article and Find Full Text PDFResection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires precise identification and delineation of BM.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date.
View Article and Find Full Text PDFSkin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-GAN (EGAN) that uses an unsupervised generative network to generate accurate lesion masks.
View Article and Find Full Text PDFThe translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms.
View Article and Find Full Text PDFPediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations.
View Article and Find Full Text PDFDeep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g.
View Article and Find Full Text PDFInformatics, MR Diffusion Tensor Imaging, MR Perfusion, MR Imaging, Neuro-Oncology, CNS, Brain/Brain Stem, Oncology, Radiogenomics, Radiology-Pathology Integration © RSNA, 2022.
View Article and Find Full Text PDFDe-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Towards this end, this manuscript describes thederatedumoregmentation (FeTS) tool, in terms of software architecture and functionality.
View Article and Find Full Text PDFGlioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2022
Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders.
View Article and Find Full Text PDFComput Biol Med
February 2022
Lung cancer is one of the deadliest types of cancers. Computed Tomography (CT) is a widely used technique to detect tumors present inside the lungs. Delineation of such tumors is particularly essential for analysis and treatment purposes.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2021
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.
View Article and Find Full Text PDFGlioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS) of patients. For precise surgical and treatment planning, OS prediction of glioblastoma (GBM) patients is highly desired by clinicians and oncologists. Radiomic research attempts at predicting disease prognosis, thus providing beneficial information for personalized treatment from a variety of imaging features extracted from multiple MR images.
View Article and Find Full Text PDF