Publications by authors named "Ujjaval Gupta"

The use of e-textiles in wearable sensor design has recently received much interest in many applications, such as robotics, rehabilitation, personal wellness, and sports. Particularly in the rehabilitation domain, it has provided a potential alternative tool for telerehabilitation. In this paper, we designed and evaluated a knitted knee brace with interconnects, resistors, and sensors for real-time kinematic data acquisition.

View Article and Find Full Text PDF

Objective: This study aimed to develop a new technique to map the strain field for persons with lower-limb amputations to use for the design of comfortable prostheses.

Methods: Using a DSLR camera with stenciled 2D markers, we demonstrated a technique to measure skin strain around the residual limb of persons with lower limb amputations. We used open-source software programs to reconstruct a series of cloud points derived from the pictures of the marked residual limb into 3D models, then calculated the minimum, maximum, and non-extension lines from directional strain fields.

View Article and Find Full Text PDF

E-textiles have recently gained significant traction in the development of soft wearables for healthcare applications. However, there have been limited works on wearable e-textiles with embedded stretchable circuits. Here, stretchable conductive knits with tuneable macroscopic electrical and mechanical properties are developed by varying the yarn combination and the arrangement of stitch types at the meso-scale.

View Article and Find Full Text PDF

E-textiles have shown great potential for development of soft sensors in applications such as rehabilitation and soft robotics. However, existing approaches require the textile sensors to be attached externally onto a substrate or the garment surface. This paper seeks to address the issue by embedding the sensor directly into the wearable using a computer numerical control (CNC) knitting machine.

View Article and Find Full Text PDF

Tunable lens technology inspired by the human eye has opened a new paradigm of smart optical devices for a variety of applications due to unique characteristics such as lightweight, low cost, and facile fabrication over conventional lens assemblies. The fast-growing demands for tunable optical lenses in consumer electronics, medical diagnostics, and optical communications require the lens to have a large focal length modulation range and high compactness. Herein, for the first time, an all-solid tunable soft lens driven by highly transparent dielectric elastomer actuators (DEAs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and waterborne polyurethane (PEDOT:PSS/WPU) transparent electrodes is developed.

View Article and Find Full Text PDF

Instabilities in a thin sheet are ubiquitous and can be induced by various stimuli, such as a uniaxial force, liquid-vapor surface tension, etc. This paper investigates voltage-induced instabilities in a membrane of a dielectric elastomer. Instabilities including buckling, wrinkling, and crumpling are observed in the experiments.

View Article and Find Full Text PDF

A membrane of a dielectric elastomer may undergo electromechanical phase transition from the flat to wrinkled state, when the applied voltage reaches a critical value. The wrinkled region is observed to expand at the expense of the flat region during the phase transition. In this paper, we report on a dynamic pattern of wrinkles in a circular membrane of a dielectric elastomer.

View Article and Find Full Text PDF