Publications by authors named "Uji S"

In this study, polyvinylpyrrolidone (PVP) was introduced into an Ag deposition-based electrochromic (EC) device as a capping agent for electrodeposited Ag nanoparticles (AgNPs) to improve the coloration characteristics of EC devices and to precisely control the size and shape of the AgNPs. Through the coordination of PVP molecules with Ag ions in the EC electrolyte, the critical voltage for the deposition of AgNPs decreased, resulting in a lower operating voltage of the EC device in comparison with the conventional one. Because particle growth and AgNP aggregation were suppressed by the capping effect of PVP, uniform electrodeposition of AgNPs was achieved.

View Article and Find Full Text PDF

Quantum oscillations (QOs) in magnetic torque and electrical resistivity were measured to investigate the electronic structure of-ReO, a candidate hourglass nodal chain (NC) metal (Dirac loop chain metal). All the de Haas-van Alphen oscillation branches measured at 30 mK in magnetic fields of up to 17.5 T were consistent with first-principles calculations predicting four Fermi surfaces (FSs).

View Article and Find Full Text PDF

Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D.

View Article and Find Full Text PDF
Article Synopsis
  • Pollen development is affected by heat stress, which causes issues with protein folding and accumulation in plant cells.
  • The endoplasmic reticulum (ER) has a specialized system for managing misfolded proteins, involving molecular chaperones like BiP and J proteins.
  • In Arabidopsis mutants lacking the ER-resident J protein ERdj3B, there are significant fertility issues at high temperatures due to impaired anther development, highlighting the critical role of this protein in heat tolerance and reproduction.
View Article and Find Full Text PDF

Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS dubbed "2M" WS , is constructed from 1T' WS monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system.

View Article and Find Full Text PDF

Nonequilibrium steady state conditions induced by a dc current can alter the physical properties of strongly correlated electron systems. In this regard, it was recently shown that dc current can trigger novel electronic states, such as current-induced diamagnetism, which cannot be realized in equilibrium conditions. However, reversible control of diamagnetism has not been achieved yet.

View Article and Find Full Text PDF

A quantum spin liquid (QSL) is an exotic state of matter in condensed-matter systems, where the electron spins are strongly correlated, but conventional magnetic orders are suppressed down to zero temperature because of strong quantum fluctuations. One of the most prominent features of a QSL is the presence of fractionalized spin excitations, called spinons. Despite extensive studies, the nature of the spinons is still highly controversial.

View Article and Find Full Text PDF

Pleuronectiform fish develop marked external asymmetry in eye location and skin color at metamorphosis. The bamboo sole, Heteromycteris japonica, also exhibits loss of the pectoral fins at metamorphosis. Because of its small body size, short generation time, and long spawning season, we focused on the bamboo sole as an experimental model to investigate metamorphic asymmetry and pectoral fin loss during development.

View Article and Find Full Text PDF

A quantum spin-liquid state, an exotic state of matter, appears when strong quantum fluctuations enhanced by competing exchange interactions suppress a magnetically ordered state. Generally, when an ordered state is continuously suppressed to 0 K by an external parameter, a quantum phase transition occurs. It exhibits critical scaling behaviour, characterized only by a few basic properties such as dimensions and symmetry.

View Article and Find Full Text PDF

Using a recombinant chimeric single-chain follicle stimulating hormone (FSH), we established a radioimmunoassay (RIA) for red seabream (Pagrus major) FSH (pmFSH) which became a powerful tool for studying reproductive physiology. We studied the profiles in plasma and pituitary concentrations of FSH and luteinizing hormone (LH) during sexual maturation. A pre-established RIA for red seabream LH was used for the LH measurements.

View Article and Find Full Text PDF

Despite the common structure of vertebrates, the development of the vertebral column differs widely between teleosts and tetrapods in several respects, including the ossification of the centrum and the function of the notochord. In contrast to tetrapods, vertebral development in teleosts is not fully understood, particularly for large fish with highly ossified bones. We therefore examined the histology and gene expression profile of vertebral development in fugu, Takifugu rubripes, a model organism for genomic research.

View Article and Find Full Text PDF

The magnetic field-induced changes in the conductivity of metals are the subject of intense interest, both for revealing new phenomena and as a valuable tool for determining their Fermi surface. Here we report a hitherto unobserved magnetoresistive effect in ultra-clean layered metals, namely a negative longitudinal magnetoresistance that is capable of overcoming their very pronounced orbital one. This effect is correlated with the interlayer coupling disappearing for fields applied along the so-called Yamaji angles where the interlayer coupling vanishes.

View Article and Find Full Text PDF

The processes underlying vertebral development in teleosts and tetrapods differ markedly in a variety of ways. At present, the molecular basis of teleost vertebral development and growth is poorly understood. Understanding vertebral development at the molecular level is important for aquaculture to prevent vertebral anomalies that can arise from a variety of factors, including excess vitamin A (all-trans retinol, VA) in the diet.

View Article and Find Full Text PDF

Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator.

View Article and Find Full Text PDF

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields.

View Article and Find Full Text PDF

We report the results of SQUID and torque magnetometry of an organic spin-1/2 triangular-lattice κ-H(3)(Cat-EDT-TTF)(2). Despite antiferromagnetic exchange coupling at 80-100 K, we observed no sign of antiferromagnetic order down to 50 mK owing to spin frustration on the triangular lattice. In addition, we found nearly temperature-independent susceptibility below 3 K associated with Pauli paramagnetism.

View Article and Find Full Text PDF

We report the observation of a Hall effect driven by orbital resonance in the quasi-1-dimensional (q1D) organic conductor (TMTSF)2ClO4. Although a conventional Hall effect is not expected in this class of materials due to their reduced dimensionality, we observed a prominent Hall response at certain orientations of the magnetic field B corresponding to lattice vectors of the constituent molecular chains, known as the magic angles (MAs). We show that this Hall effect can be understood as the response of conducting planes generated by an effective locking of the orbital motion of the charge carriers to the MA driven by an electron-trajectory resonance.

View Article and Find Full Text PDF

Muscle development in the bamboo sole Heteromycteris japonicus was investigated, focusing primarily on the cranial muscles, using an improved whole mount immunohistochemical staining method with potassium hydroxide, hydrogen peroxide and trypsin. Larvae of H. japonicus had branchial levators, but not all of them were retained in adults, a condition also seen in the Japanese flounder Paralichthys olivaceus.

View Article and Find Full Text PDF

The current-voltage characteristics in the charge order state of the two-dimensional organic conductor α-(BEDT-TTF)(2)I(3) exhibit power law behavior at low temperatures. The power law is understood in terms of the electric-field-dependent potential between electrons and holes, which are thermally excited from the charge order state. The power law exponent steeply changes from 1 to 3 in the range from 30 to 45 K with decreasing temperature, thereby suggesting the occurrence of a Kosterlitz-Thouless-type transition; many (few) unbound electron-hole pairs are thermally excited above (below) the transition.

View Article and Find Full Text PDF

We report the molecular dipole effect on conduction electrons in the title superconductor. The angular-dependent magnetoresistance has a peak for fields nearly parallel to the conducting layer, and the peak width scales as the field component perpendicular to the layer, indicating incoherent interlayer transport. However, two closed Fermi surfaces are observed in quantum oscillation.

View Article and Find Full Text PDF

In Mott insulators, the strong electron-electron Coulomb repulsion localizes electrons. In dimensions greater than one, their spins are usually ordered antiferromagnetically at low temperatures. Geometrical frustrations can destroy this long-range order, leading to exotic quantum spin liquid states.

View Article and Find Full Text PDF

In mammals, the role of the suprachiasmatic nucleus (SCN) as the primary circadian clock that coordinates the biological rhythms of peripheral oscillators is well known. However, in teleosts, it remains unclear whether the SCN also functions as a circadian pacemaker. We used in situ hybridization (ISH) techniques to demonstrate that the molecular clock gene, per2, is expressed in the SCN of flounder (Paralichthys olivaceus) larvae during the day and down-regulated at night, demonstrating that a circadian pacemaker exists in the SCN of this teleost.

View Article and Find Full Text PDF

In order to better understand the endocrine aberrations related to abnormal metamorphic pigmentation that appear in flounder larvae reared in tanks, this study examined the effects of continuous 24-h illumination (LL) through larval development on the expression of tyrosine hydroxylase-1 (th1), proopiomelanocortin (pomc), α-melanophore-stimulating hormone (α-MSH) and melanin concentrating hormone (MCH), which are known to participate in the control of background adaptation of body color. We observed two conspicuous deviations in the endocrine system under LL when compared with natural light conditions (LD). First, LL severely suppressed th1 expression in the dopaminergic neurons in the anterior diencephalon, including the suprachiasmatic nucleus (SCN).

View Article and Find Full Text PDF

We show that the Fermi surface (FS) in the antiferromagnetic phase of BaFe(2)As(2) is composed of one hole and two electron pockets, all of which are three dimensional and closed, in sharp contrast to the FS observed by angle-resolved photoemission spectroscopy. Considerations on the carrier compensation and Sommerfeld coefficient rule out existence of unobserved FS pockets of significant sizes. A standard band structure calculation reasonably accounts for the observed FS, despite the overestimated ordered moment.

View Article and Find Full Text PDF