Publications by authors named "Ujang Z"

 This clinical trial aimed to evaluate the clinical efficacy of chitosan derivative hydrogel paste (CDHP) as a wound bed preparation for wounds with cavities.  This study enrolled 287 patients, with 143 patients randomized into the CDHP group (treatment) and 144 patients randomized into the commercial hydroactive gel (CHG) group (control). The granulation tissue, necrotic tissue, patient comfort, clinical signs, symptoms, and patient convenience during the application and removal of the dressing were assessed.

View Article and Find Full Text PDF

Objectives: Chitosan, the N-deacetylated derivative of chitin, has useful biological properties that promote haemostasis, analgesia, wound healing, and scar reduction; chitosan is bacteriostatic, biocompatible, and biodegradable. This study determined the efficacy of chitosan derivative film as a superficial wound dressing.

Methods: This multicentre randomised controlled trial included 244 patients, of whom 86 were treated with chitosan derivative film and 84 with hydrocolloid.

View Article and Find Full Text PDF

The effect of temperature on the efficiency of organics and nutrients removal during the cultivation of aerobic granular sludge (AGS) in biological treatment of synthetic wastewater was studied. With this aim, three 3 L sequencing batch reactors (SBRs) with influent loading rate of 1.6 COD g (L d) were operated at different high temperatures (30, 40 and 50 °C) for simultaneous COD, phosphate and ammonia removal at a complete cycle time of 3 h.

View Article and Find Full Text PDF

The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO) removal in POME for one complete SBR cycle. Also, the granules had reached CO removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO from gas to liquid as well as the simultaneous effect of CO production and respiration among the microbes.

View Article and Find Full Text PDF

Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem.

View Article and Find Full Text PDF

Chitosan-derived biomaterials have been reported to adhere when in contact with blood by encouraging platelets to adhere, activate and aggregate at the sites of vascular injury, thus enhanced wound healing capacity. This study investigated platelet morphology changes and the expression level of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB (PDGF-AB) in the adherence of two different types of chitosans in von Willebrand disease (vWD): N,O-carboxymethylchitosan (NO-CMC) and oligo-chitosan (O-C). Fourteen vWD voluntary subjects were recruited, and they provided written informed consent.

View Article and Find Full Text PDF

Introduction: Von Willebrand disease (vWD) is the second least common hemostatic disorder in Malaysia, and it has a low prevalence. This study examined the underlying platelet thrombogenicity cascades in the presence of different formulations of chitosan-derivatives in vWD patients. This paper aimed to determine the significant influence of chitosan biomaterial in stimulating the platelet thrombogenicity cascades that involve the von Willebrand factor, Factor 8, Thromboxane A2, P2Y12 and Glycoprotein IIb/IIIa in vWD.

View Article and Find Full Text PDF

With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1).

View Article and Find Full Text PDF

The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.

View Article and Find Full Text PDF

Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions.

View Article and Find Full Text PDF

Platelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) has been applied to treat a broad range of industrial and municipal wastewater. AGS can be developed in a sequencing batch reactor (SBR) with alternating anaerobic-aerobic conditions. To provide anaerobic conditions, the mixed liquor is allowed to circulate in the reactor without air supply.

View Article and Find Full Text PDF

The influence of hydraulic retention time (HRT, 24, 12, and 6h) on the physical characteristics of granules and performance of a sequencing batch reactor (SBR) treating rubber wastewater was investigated. Results showed larger granular sludge formation at HRT of 6h with a mean size of 2.0±0.

View Article and Find Full Text PDF

Background: The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing.

Methods: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.

View Article and Find Full Text PDF

The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater.

View Article and Find Full Text PDF

Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.

View Article and Find Full Text PDF

High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min.

View Article and Find Full Text PDF

Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study.

View Article and Find Full Text PDF

This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions.

View Article and Find Full Text PDF

Biofouling is a crucial factor in membrane bioreactor (MBR) applications, particularly for high organic loading operations. This paper reports a study on biofouling in an MBR to establish a relationship between critical flux, Jc, mixed liquor suspended solids (MLSS) (ranging from 5 to 20 g L-1) and volumetric loading rate (6.3 kg COD m-3 h-1) of palm oil mill effluent (POME).

View Article and Find Full Text PDF

The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.

View Article and Find Full Text PDF

The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used.

View Article and Find Full Text PDF

Phytochemical and bioactivity studies of the leaves and stem barks of Tibouchina semidecandra L. have been carried out. The ethyl acetate extract of the leaves yielded four flavonoid compounds, identified as quercetin, quercetin 3-O-α-l-(2''-O-acetyl) arabinofuranoside, avicularin, and quercitrin, while the stem barks gave one ellagitannin, identified as 3,3'-O-dimethyl ellagic acid 4-O-α-l-rhamnopyranoside.

View Article and Find Full Text PDF

Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs.

View Article and Find Full Text PDF