Publications by authors named "Uisung Lee"

This study presents a cradle-to-grave life cycle analysis (LCA) of the greenhouse gas (GHG) emissions of the electricity generated from forest biomass in different regions of the United States (U.S.), taking into consideration regional variations in biomass availabilities and logistics.

View Article and Find Full Text PDF

meso-Carboxyl-BODIPY responds to small electronic changes resulting from acyl substitution reactions with a marked change in fluorescence. Herein, the minute changes that accompany the thioester to amide conversion encountered in native chemical ligation (NCL) are exploited in the construction of fluorescent "turn-on" probes. Two fluorogenic probes, 1 a and 4, derived from a meso-thioester-BODIPY scaffold, were designed for the selective detection of cysteine (1 a) and aminopeptidase N (4), respectively.

View Article and Find Full Text PDF

This study performed technoeconomic and life-cycle analyses to assess the economic feasibility and emission benefits and tradeoffs of various biofuel production pathways as an alternative to conventional marine fuels. We analyzed production pathways for (1) Fischer-Tropsch diesel from biomass and cofeeding biomass with natural gas or coal, (2) renewable diesel via hydroprocessed esters and fatty acids from yellow grease and cofeeding yellow grease with heavy oil, and (3) bio-oil via fast pyrolysis of low-ash woody feedstock. We also developed a new version of the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) marine fuel module for the estimation of life-cycle greenhouse gas (GHG) and criteria air pollutant (CAP) emissions of conventional and biobased marine fuels.

View Article and Find Full Text PDF

Captured CO is a potential feedstock to produce fuel/chemicals using renewable electricity as the energy source. We explored resource availability and synergies by region in the United States and conducted cost and environmental analysis to identify unique opportunities in each region to inform possible regional and national actions for carbon capture and utilization development. This study estimated production cost of synthetic methanol and Fischer-Tropsch (FT) fuels by using CO captured from the waste streams emitted from six industrial [ethanol, ammonia, natural gas (NG) processing, hydrogen, cement, and iron/steel production plants] and two power generation (coal and NG) processes across the United States.

View Article and Find Full Text PDF

Clinical identification of the pathogenic bacterium in cultures relies on the detection of bacterial butyrate esterase (C4-esterase) using a coumarin-based fluorogenic substrate, 4-methylumbelliferyl butyrate. However, this classical probe may give false-positive responses because of its poor stability and lack of specificity. Here, we report a new colorimetric and fluorogenic probe design employing a -ester-substituted boron dipyrromethene (BODIPY) dye for the specific detection of C4-esterase activity expressed by .

View Article and Find Full Text PDF

Fluorescence-based amine-reactive dyes are highly valuable for the sensing of amines and the labeling of biomolecules. Although it would be highly desirable, large changes in emission spectra and intensity seldom accompany the conjugation of known amine-reactive dyes to their target molecules. On the contrary, amide bond formation between amines and the pentafluorophenyl () and succinimidyl () esters of -carboxyBODIPY results in significant changes in emission maxima (Δλ: 70-100 nm) and intensity (up to 3000-fold), enabling the fast (down to 5 min) and selective fluorogenic detection and labeling of amines, amino acids, and proteins.

View Article and Find Full Text PDF

Microalgae have great potential as an energy and feed resource. Here we evaluate the water use associated with freshwater algae cultivation and find it is possible to scale U.S.

View Article and Find Full Text PDF

Energy production typically consumes a large amount of fresh water, which is a critical resource for both human and ecosystem needs. Robust water impact analysis is prudent prior to deploying new energy systems at scale. While there are many water indices representing relative water availability (or scarcity), they are not suitable for analyzing the impact of consumptive water in the context of life-cycle analysis (LCA).

View Article and Find Full Text PDF