The aim of this study was to develop artificial neural network (ANN) models to predict floods in the Branco River, Amazon basin. The input data for the models included the river levels and the average rainfall within the drainage area of the basin, which was estimated from the remotely sensed rainfall product PDIRnow. The hourly water level data used in the study were recorded by fluviometric telemetric stations belonging to the National Agency of Water.
View Article and Find Full Text PDFEnvironmental vulnerability is an important tool to understand the natural and anthropogenic impacts associated with the susceptibility to environmental damage. This study aims to assess the environmental vulnerability of the Doce River basin in Brazil through Multicriteria Decision Analysis based on Geographic Information Systems (GIS-MCDA). Natural factors (slope, elevation, relief dissection, rainfall, pedology, and geology) and anthropogenic factors (distance from urban centers, roads, mining dams, and land use) were used to determine the environmental vulnerability index (EVI).
View Article and Find Full Text PDFSurface sediment concentration (SSC) is linked to several problems related to water quality and its monitoring is costly because of the required fieldwork and laboratory analyses. Thus, sediment measurements are often sporadic, punctual, and performed during a short period. Orbital remote sensing allows the monitoring of SSC along the river channel permitting continuous and spatial information.
View Article and Find Full Text PDF