Publications by authors named "Ui-Seon Hong"

To monitor airborne nanoparticles at a particular point of interest sensitively and accurately, we developed a compact and inexpensive but highly-precise nanoparticle detection system. The proposed system, based on nucleation light-scattering, consists of two components: a microelectromechanical system (MEMS)-based particle growth chip that grows nanoparticles to micro-sized droplets through condensation and a miniaturized optical particle counter (mini-OPC) that detects individual grown droplets using a light-scattering method. To minimize the dimensions and cost of this system, all elements of the particle growth chip were integrated onto a glass slide through simple photolithography and 3D printing.

View Article and Find Full Text PDF

To achieve real-time monitoring of aerodynamic submicron particle size distributions at a point-of-interest, we developed a high-performance particle size spectrometer that is compact, low-cost, and portable. The present system consists of four key components: a unipolar mini-discharger for electrically charging particles, an inertial size-separator for classifying charged particles into five size fractions in terms of their aerodynamic sizes, a portable multi-channel electrometer for detecting femto-ampere currents carried by charged particles at each stage, and a retrieval algorithm for converting the current data into a smooth particle size distribution. The unipolar mini-discharger and inertial size separator were quantitatively characterised by using standard polystyrene latex (PSL) particles.

View Article and Find Full Text PDF