Publications by authors named "Ugur Yahsi"

As a promising photocathode candidate, tetragonal CuBiO (CBO) has been studied extensively in recent years. As an intrinsically p-type material, its acceptor sites originate from the cation vacancies, which are also a potential cause of hindered hole utilization in photocathodes. In this study, the ultrafast transport dynamics of the valence band hole states in CBO photocathodes were investigated by varying their atomic composition and manipulating the p-type character.

View Article and Find Full Text PDF

Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition ( ), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination.

View Article and Find Full Text PDF

This work reports the effects of free volume on curcumin release in various polymer-based composite films. Curcumin-reinforced biocomposite films were fabricated with natural biopolymers (carrageenan and chitosan) and bioplastics (poly(lactide) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT)) via the solvent casting method. The curcumin release test was performed using an aqueous medium, and it was found that it was released the fastest in the carrageenan film, followed by the chitosan, PLA, and PBAT films, presumably owing to the dissimilarity of the polymer matrix.

View Article and Find Full Text PDF