Publications by authors named "Ugur Kadak"

In this paper, we essentially deal with Köthe-Toeplitz duals of fuzzy level sets defined using a partial metric. Since the utilization of Zadeh's extension principle is quite difficult in practice, we prefer the idea of level sets in order to construct some classical notions. In this paper, we present the sets of bounded, convergent, and null series and the set of sequences of bounded variation of fuzzy level sets, based on the partial metric.

View Article and Find Full Text PDF

In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the field ℂ(*) and characterize some classes of infinite matrices with respect to the non-Newtonian calculus.

View Article and Find Full Text PDF

The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983), Grossman and Katz (1978), and Grossman (1979).

View Article and Find Full Text PDF

Fourier analysis is a powerful tool for many problems, and especially for solving various differential equations of interest in science and engineering. In the present paper since the utilization of Zadeh's Extension principle is quite difficult in practice, we prefer the idea of level sets in order to construct a fuzzy-valued function on a closed interval via related membership function. We derive uniform convergence of a fuzzy-valued function sequences and series with level sets.

View Article and Find Full Text PDF