Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms.
View Article and Find Full Text PDFNeuroblastoma is one of the most common solid tumors and accounts for ∼ 15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed.
View Article and Find Full Text PDFBackground: Tissue-transglutaminase (TG2), a dual function G-protein, plays key roles in cell differentiation and migration. In our previous studies we reported the mechanism of TG2-induced cell differentiation. In present study, we explored the mechanism of how TG2 may be involved in cell migration.
View Article and Find Full Text PDFDiabetes is a metabolic disorder that, during pregnancy, may affect fetal development. Fetal outcome depends on the type of diabetes present, the concentration of blood glucose and the extent of fetal exposure to elevated or frequently fluctuating glucose concentrations. The result of some diabetic pregnancies will be embryonic developmental abnormalities, a condition referred to as diabetic embryopathy.
View Article and Find Full Text PDFEthanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development.
View Article and Find Full Text PDFDiabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions.
View Article and Find Full Text PDFIn humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development.
View Article and Find Full Text PDFScope: Diabetic embryopathy, a consequence of diabetic pregnancy, is associated with increase in embryonic oxidative stress and apoptosis, which lead to severe embryonic damage at early stage of organogenesis.
Methods And Results: This study investigated if resveratrol, found in red grapes and blue-berries, may prevent diabetes-induced oxidative stress and apoptosis in embryos and have beneficial effects in diabetic dams. A rodent model of diabetic embryopathy was used.
Scope: The "fetal basis of adult disease" hypothesis proposes that prenatal exposure to environmental stress can lead to increased susceptibility to clinical disorders later in life. In utero exposure of fetus to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to alterations in T-cell differentiation in the thymus and increased susceptibility to autoimmune disease later in life. TCDD triggers toxicity through activation of aryl hydrocarbon receptor and severely affects maternal and fetal immune system during pregnancy.
View Article and Find Full Text PDFBackground: Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects.
View Article and Find Full Text PDFCannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors.
View Article and Find Full Text PDFCauses of retinoid resistance often observed in neuroblastomas are unknown. We studied all trans-retinoic acid (RA) signaling in neuroblastoma cells differing in N-myc levels in terms of neurite formation, expression of tissue transglutaminase, neuronal marker proteins, matrix metalloproteinases (MMPs), and activation of Rac1 and Cdc42. Poor invasiveness observed in SH-SY5Y, LA-N-5, and SMS-KCNR cells was associated with RA-induced neurite formation, Cdc42 activation and N-myc down regulation; expression of constitutively active Cdc42 down regulated N-myc expression and reduced invasion in RA-resistant SK-N-BE(2) and IMR32 cells.
View Article and Find Full Text PDFDiabetes is a risk factor for neuronal dysfunction. Impairment in signaling mechanisms that regulate differentiation of neurons is hypothesized to be one of the main causes of neuronal dysfunction. Retinoic acid, a physiologically active retinoid synthesized from vitamin A, regulates neuronal differentiation during embryonic development and is required for maintenance of plasticity in differentiated neurons.
View Article and Find Full Text PDFWe previously reported that overexpression of a secreted version of fibroblast growth factor-1 (sp-FGF-1) has the ability to induce angiogenesis in the chicken chorioallantoic membrane (CAM). In our current study, we examine the effects of sp-FGF-1 through a time course analysis of angiogenesis in the chicken CAM on days 3, 4, and 5 after gene transfection. Significant angiogenesis was observed on days 4 and 5 after gene transfection in the CAM assay.
View Article and Find Full Text PDFRho GTPases such as RhoA, Rac1 and Cdc42 are crucial players in the regulation of signal transduction pathways required for neuronal differentiation. Using an in vitro cell culture model of neuroblastoma SH-SY5Y cells, we demonstrated previously that RhoA is an in vivo substrate of tissue transglutaminase (TGase) and retinoic acid (RA) promoted activation of RhoA by transamidation. Although activation of RhoA promoted cytoskeletal rearrangement in SH-SY5Y cells, it was not involved in induction of neurite outgrowth.
View Article and Find Full Text PDFTransfection of chicken chorioallantoic membranes (CAMs) with a chimeric secreted version of fibroblast growth factor-1 (sp-FGF-1) gene construct leads to a significant increase in vascularization. Though FGF-stimulated angiogenesis has been extensively studied, the molecular mechanisms regulating FGF-1-induced angiogenesis are poorly understood in vivo. This study was designed to investigate the role of the AKT (PKB) kinase signaling pathway in mediating sp-FGF-1-induced angiogenesis in the chicken CAM.
View Article and Find Full Text PDFAll-trans retinoic acid (RA) has been implicated in mediation of cardiac growth inhibition in neonatal cardiomyocytes. However, the associated signaling mechanisms remain unclear. Utilizing neonatal cardiomyocytes, we demonstrated that RA suppressed the hypertrophic features induced by cyclic stretch or angiotensin II (Ang II).
View Article and Find Full Text PDFSignaling events, including Rho GTPases and protein kinase C (PKC), are involved in cardiac hypertrophy. However, the mechanisms by which these pathways cooperate during the hypertrophic process remain unclear. Using an in vitro cyclic stretch model with neonatal rat cardiomyocytes, we demonstrated that stretch-induced activation of RhoA, Rac1/Cdc42, and phosphorylation of Rho-guanine nucleotide dissociation inhibitor (GDI) were prevented by inhibition or depletion of PKC, using chelerythrine and phorbol 12-myristate 13-acetate, indicating that phorbol ester-sensitive PKC isozymes may be upstream regulators of Rho GTPases.
View Article and Find Full Text PDFAll-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase and in vivo transamidation and activation of RhoA.
View Article and Find Full Text PDFTissue transglutaminase (TGase) is involved in the regulation of several biological events including cellular differentiation and apoptosis. The expression and activation of TGase are up-regulated in response to retinoic acid (RA), leading to the protection of several cell lines against N-(4-hydroxyphenyl)retinamide (HPR)-induced apoptosis. The anti-apoptotic mechanisms of TGase are poorly understood at this time.
View Article and Find Full Text PDF