Publications by authors named "Ugo Szachnowski"

Eukaryotic mRNAs carry an N7-methylguanosine (mG) cap structure at their 5' extremity, which protects them from the degradation by 5'-3' exoribonucleases and plays a pivotal role in mRNA metabolism, promoting splicing, nuclear export, and translation. Decapping, the enzymatic process that removes this structure, is a key event during cytoplasmic mRNA 5'-3' decay, leading to the degradation of the transcript body by Xrn1. In this chapter, we describe a procedure to assess the cap status of RNA at the transcriptome level.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes.

View Article and Find Full Text PDF

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process.

View Article and Find Full Text PDF

Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs).

View Article and Find Full Text PDF

The expression of yeast long non-coding (lnc)RNAs is restricted by RNA surveillance machineries, including the cytoplasmic 5'-3' exonuclease Xrn1 which targets a conserved family of lncRNAs defined as XUTs, and that are mainly antisense to protein-coding genes. However, the co-factors involved in the degradation of these transcripts and the underlying molecular mechanisms remain largely unknown. Here, we show that two RNA helicases, Dbp2 and Mtr4, act as global regulators of XUTs expression.

View Article and Find Full Text PDF

Bone marrow (BM) long-lived plasma cells (PCs) are essential for long-term protection against infection, and their persistence within this organ relies on interactions with Cxcl12-expressing stromal cells that are still not clearly identified. Here, using single cell RNAseq and in silico transinteractome analyses, we identified Leptin receptor positive (LepR ) mesenchymal cells as the stromal cell subset most likely to interact with PCs within the BM. Moreover, we demonstrated that depending on the isotype they express, PCs may use different sets of integrins and adhesion molecules to interact with these stromal cells.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) describes the loss of epithelial traits and gain of mesenchymal traits by normal cells during development and by neoplastic cells during cancer metastasis. The long noncoding RNA HOTAIR triggers EMT, in part by serving as a scaffold for PRC2 and thus promoting repressive histone H3K27 methylation. In addition to PRC2, HOTAIR interacts with the LSD1 lysine demethylase, an epigenetic regulator of cell fate during development and differentiation, but little is known about the role of LSD1 in HOTAIR function during EMT.

View Article and Find Full Text PDF

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator.

View Article and Find Full Text PDF

Antisense long noncoding (aslnc)RNAs are extensively degraded by the nuclear exosome and the cytoplasmic exoribonuclease Xrn1 in the budding yeast , lacking RNAi. Whether the ribonuclease III Dicer affects aslncRNAs in close RNAi-capable relatives remains unknown. Using genome-wide RNA profiling, here we show that aslncRNAs are primarily targeted by the exosome and Xrn1 in the RNAi-capable budding yeast , Dicer only affecting Xrn1-sensitive aslncRNAs levels in Xrn1-deficient cells.

View Article and Find Full Text PDF

GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast.

View Article and Find Full Text PDF

5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs.

View Article and Find Full Text PDF