The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken.
View Article and Find Full Text PDFA hallmark of chronic infections is the presence of exhausted CD8 T cells, characterized by a distinct transcriptional program compared with functional effector or memory cells, co-expression of multiple inhibitory receptors, and impaired effector function, mainly driven by recurrent T cell receptor engagement. In the context of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, most studies focused on studying splenic virus-specific CD8 T cells. Here, we provide a detailed characterization of exhausted CD8 T cells isolated from six different tissues during established LCMV infection, using single-cell RNA sequencing.
View Article and Find Full Text PDFReassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process.
View Article and Find Full Text PDF