Social animals display a wide range of behavioural defences against infectious diseases, some of which increase social contacts with infectious individuals (e.g. mutual grooming), while others decrease them (e.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2019
The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated.
View Article and Find Full Text PDFReinvestigation of the raw data revealed an unfortunate error in Ugelvig et al. 2008 [1].
View Article and Find Full Text PDFAlthough the proportion of women in science, and in evolutionary biology in particular, has substantially increased over the last century, women remain underrepresented in academia, especially at senior levels. In addition, their scientific achievements do not always receive the same level of recognition as do men's, which can be reflected in a lower relative representation of women among invited speakers at conferences or specialized courses. Using announcements sent to the EvolDir mailing list between April 2016 and September 2017, and the symposium programs of three large evolutionary biology congresses held in summer 2017, we quantified the representation of women announced as invited speakers in conferences, congress symposia, and specialized courses.
View Article and Find Full Text PDFVarious insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, , but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission.
View Article and Find Full Text PDFIn social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant , the negative consequences of fungal infections () can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2015
To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour--either performed towards oneself (self-grooming) or towards others (allogrooming)--to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals.
View Article and Find Full Text PDFBackground: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony.
View Article and Find Full Text PDFTo fight infectious diseases, host immune defenses are employed at multiple levels. Sanitary behavior, such as pathogen avoidance and removal, acts as a first line of defense to prevent infection before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care toward pathogen-exposed group members.
View Article and Find Full Text PDFDispersal is crucial for gene flow and often determines the long-term stability of meta-populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark-recapture observations that are suspected to be poor predictors of long-distance dispersal.
View Article and Find Full Text PDFDue to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation.
View Article and Find Full Text PDFBackground: Fragmentation of terrestrial ecosystems has had detrimental effects on metapopulations of habitat specialists. Maculinea butterflies have been particularly affected because of their specialized lifecycles, requiring both specific food-plants and host-ants. However, the interaction between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown.
View Article and Find Full Text PDFDespite much research on the socially parasitic large blue butterflies (genus Maculinea) in the past 40 years, their relationship to their closest relatives, Phengaris, is controversial and the relationships among the remaining genera in the Glaucopsyche section are largely unresolved. The evolutionary history of this butterfly section is particularly important to understand the evolution of life history diversity connected to food-plant and host-ant associations in the larval stage. In the present study, we use a combination of four nuclear and two mitochondrial genes to reconstruct the phylogeny of the Glaucopsyche section, and in particular, to study the relationships among and within the Phengaris-Maculinea species.
View Article and Find Full Text PDFSocial organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior.
View Article and Find Full Text PDFIt is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L.
View Article and Find Full Text PDFBackground: The invasive garden ant, Lasius neglectus, is the most recently detected pest ant and the first known invasive ant able to become established and thrive in the temperate regions of Eurasia. In this study, we aim to reconstruct the invasion history of this ant in Europe analysing 14 populations with three complementary approaches: genetic microsatellite analysis, chemical analysis of cuticular hydrocarbon profiles and behavioural observations of aggression behaviour. We evaluate the relative informative power of the three methodological approaches and estimate both the number of independent introduction events from a yet unknown native range somewhere in the Black Sea area, and the invasive potential of the existing introduced populations.
View Article and Find Full Text PDFLife in a social group increases the risk of disease transmission. To counteract this threat, social insects have evolved manifold antiparasite defenses, ranging from social exclusion of infected group members to intensive care. It is generally assumed that individuals performing hygienic behaviors risk infecting themselves, suggesting a high direct cost of helping.
View Article and Find Full Text PDFBackground: Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var.
View Article and Find Full Text PDF