Publications by authors named "Ufuk Saim Gunay"

The rapid manufacturing of biocomposite scaffold made of saturated-Poly(ε-caprolactone) (PCL) and unsaturated Polyester (PE) blends with gelatin and modified gelatin (NCO-Gel) is demonstrated. Polyester blend-based scaffold are fabricated with and without applying potential in the melt electrowriting system. Notably, the applied potential induces phase separation between PCL and PE and drives the formation of PE rich spots at the interface of electrowritten fibers.

View Article and Find Full Text PDF

The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process.

View Article and Find Full Text PDF

Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased "green" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer.

View Article and Find Full Text PDF

We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 μm distance.

View Article and Find Full Text PDF