Ciprofloxacin (CIP) is a widely used antibiotic, and its presence in water bodies poses a risk due to its resistance to conventional wastewater treatment processes. The accumulation of such pharmaceuticals can disrupt aquatic ecosystems, harm aquatic life, and contribute to ecological imbalances. Therefore, the degradation of CIP is of immense environmental significance.
View Article and Find Full Text PDFπ-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve their performance in device applications. Graphene and reduced graphene oxide (RGO) derivatives are interesting materials with a unique structure and outstanding properties.
View Article and Find Full Text PDFThis paper reports the development of a highly crosslinked hyper-branched polyglycerol (HPG) polymer bound to elastin-like proteins (ELPs) to create a membrane that undergoes a distinct closed-to-open permeation transition at 32 °C. The crosslinked HPG forms a robust, mesoporous structure (150-300 nm pores), suitable for selective filtration. The membranes were characterized by FTIR, UV-visible spectroscopy, SEM, and AFM, revealing their structural and morphological properties.
View Article and Find Full Text PDFThe present work reports the synthesis of indigo-dye-incorporated polyaniline (Indigo-PANI), poly(1-naphthylamine) (Indigo-PNA), poly(o-phenylenediamine) (Indigo-POPD), polypyrrole (Indigo-PPy), and polythiophene (Indigo-PTh) via an ultrasound-assisted method. The synthesized oligomers were characterized using FTIR, UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence studies, and thermogravimetric analysis (TGA). The experimental data were theoretically compared to analyze the vibrational and electronic spectra via time-dependent density-functional theory (TD-DFT) by applying the Becke, three-parameter, and Lee-Yang-Parr (B3LYP) method with a 6-311G (d,p) basis set.
View Article and Find Full Text PDFThe present work highlights the synthesis and characterization of conducting polymer (CP)-based composite hydrogels with gelatin (GL-B) for their application as drug delivery vehicles. The spectral, morphological, and rheological properties of the synthesized hydrogels were explored, and morphological studies confirmed formation of an intense interpenetrating network. Rheological measurements showed variation in the flow behavior with the type of conducting polymer.
View Article and Find Full Text PDFIn this paper, we have design, synthesized and fully characterized a new -fluorescein substituted one-walled calix[4]pyrrole (C4P7), obtained from simple and easily available starting materials such as fluorescein, 4-hydroxyacetophenone and pyrrole. The anion sensing studies reveal that the C4P7 system displays selective and sensitive naked-eye sensing towards fluoride, phosphate, and acetate anions with the limit of detection of 4.27 mg L, 6.
View Article and Find Full Text PDFThe present work reports, for the first time, synthesis of dye incorporated -phenylenediamine (OBB) with a view to obtain a conjugated oligomer with enhanced functionality. The structure was confirmed by IR studies, while the electronic transitions were confirmed by UV visible studies. The dye modified oligomer showed one order higher fluorescence intensity than the pristine Bismarck Brown (BB) dye.
View Article and Find Full Text PDFTetracycline hydrochloride (TC-HCl) is widely implemented as a wide-ranging antibacterial drug in medical care and animal husbandry, in spite of having negative effects on the environment and human health. Photocatalytic treatment is one of the popular techniques used to treat TC-HCl in wastewater. In this study, we have used CuFeO and CuFeO/polyaniline (PANI) nanohybrids as photocatalysts for the degradation of TC-HCl.
View Article and Find Full Text PDFComposite hydrogels of Na-Alginate (Na-ALG) and Gelatin (GEL) with conducting polymers (CPs) were synthesised using poly(o-phenylenediamine) (POPD), polyaniline (PANI), poly(1-naphthylamine (PNA) and poly(vinylenedine fluoride) (PVDF). The synthesised hydrogels were characterized using FTIR, scanning electron microscopy (SEM) rheology, swelling ability and in-vitro drug release characteristics. The purpose of this investigation was to determine whether these hydrogels could be used to deliver antibiotics for extended drug release.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
The work reports for the first time microwave-assisted degradation of Methyl Red (MR) dye using polythiophene (PTh), polyfuran (PFu) and its co-oligomers. The co-oligomers were synthesized by sonication using varying mol ratios of PFu/PTh (80:20, 50:50 and 20:80). The polymers and its co-oligomers were analyzed for their spectral and morphological properties using FTIR, UV-visible and scanning electron microscopy (SEM) coupled with elemental mapping.
View Article and Find Full Text PDFThe present work reports facile synthesis of CuFeO nanoparticles via co-precipitation method and formulation of its nanohybrids with polythiophene (PTh). The structural and morphological properties were investigated using fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectra (SEM-EDS) and UV-Vis spectroscopy. The band gap was found to decrease with increase in the loading of PTh and was found to be 2.
View Article and Find Full Text PDFVarious reports have been published based on covalently attaching biomolecules to polyaniline (PANI). The functional groups connected to the surface of polymeric units determine the immobilization method as well as the method of detection. The present mini-review aims at covering recent advances in the field of protein binding and detection using PANI.
View Article and Find Full Text PDFConductive polymeric hydrogels (CPHs) exhibit remarkable properties such as high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimulus responsiveness, stretch ability, self-healing, and strain sensitivity. Due to their exceptional physicochemical and physio-mechanical properties, among the widely studied CPHs, polyaniline (PANI) has been the subject of immense interest due to its stability, tunable electrical conductivity, low cost, and good biocompatibility. The current state of research on PANI hydrogel is discussed in this short review, along with the properties, preparation methods, and common characterization techniques as well as their applications in a variety of fields such as sensor and actuator manufacturing, biomedicine, and soft electronics.
View Article and Find Full Text PDFThe pandemic due to COVID-19 caused by SARS-CoV-2 has led to the recorded deaths worldwide and is still a matter of concern for scientists to find an effective counteragent. The combination therapy is always been a successful attempt in treating various threatful diseases. Recently, Ionic liquids (ILs) are known for their antiviral activity.
View Article and Find Full Text PDFThe accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
The present study reports the design of heterogeneous photocatalytic system using FeO with chitosan (CS) as a matrix for the sonophotocatalytic degradation of 2,4,6-trichlorophenol (2,4,6-TCP). CS was chosen as a polymer matrix as it is abundant in nature, eco-friendly, and can be easily processed into microparticles, nanofibers, as well as nanoparticles and shows the tendency of adhesion towards a vast range of solid substrates besides serving as a chelating agent toward metallic oxides. The nanohybrids were characterized via Fourier transformation infrared spectrum (FT-IR), X-ray diffraction (XRD), scanning electron microscopy coupled with electron dispersive spectrum (SEM-EDS), thermogravimetric analysis (TGA), and UV-visible diffuse reflectance (UV-Vis-DRS) analyses.
View Article and Find Full Text PDFThe present manuscript reports the synthesis of benzoquinone (BQ) modified polythiophene (PTh) by chemical and microwave-assisted polymerization techniques. The synthesized oligomers were investigated for their spectral, morphological and thermal properties FTIR, UV-visible, scanning electron microscopy (SEM) and thermogravimetric (TGA) analyses. Theoretical calculations were performed by using Gaussian 09 software the DFT/B3LYP method with the 6-311G basis set.
View Article and Find Full Text PDFCatalytic degradation based on microwave irradiation is an emerging technique which promises prompt and efficient catalytic degradation of organic pollutants. Calcium ferrite (CaFeO), poly(1-napththylamine) (PNA), and PNA/CaFeO nanohybrids were synthesized via microwave-assisted technique. The properties of the as-prepared CaFeO, PNA, and PNA/CaFeO nanohybrids were characterized by the thermogravimetric analysis (TGA), FTIR, XRD, SEM, and ultraviolet-visible spectrophotometry (UV-vis) analyses.
View Article and Find Full Text PDFAg-AgO nanoparticles were synthesized using plant extract. The nanoparticles were sensitized with polythiophene (PTh) and were characterized via scanning electron microscopy with energy dispersive X-ray and elemental mapping, transmission electron microscopy, X-ray diffraction (XRD), Fourier-transform infrared, and UV-vis spectroscopy analyses. The elemental mapping results revealed that the samples were composed of C, S, Ag, and O elements which were uniformly distributed in the nanohybrid.
View Article and Find Full Text PDFThe present work describes the synthesis of α-MnO nanorods using a natural extract of Brassica oleracea (cabbage) and the formulation of its nanohybrids with polycarbazole, i.e., α-MnO/PCz.
View Article and Find Full Text PDFThe present work reports microwave-assisted synthesis of SnO nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies.
View Article and Find Full Text PDFTo study the effect of insertion of azobenzene moiety on the spectral, morphological and fluorescence properties of conventional conducting polymers, the present work reports ultrasound-assisted polymerization of azobenzene with aniline, 1-naphthylamine, luminol and o-phenylenediamine. The chemical structure and polymerization was established via Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (H-NMR) spectroscopy, while the electronic properties were explored via ultraviolet-visible (UV-vis) spectroscopy. Theoretical IR and UV spectra were computed using DFT/B3LYP method with 6-311G basis set while theoretical H-NMR spectra was obtained by gauge independent atomic orbital (GIAO) method.
View Article and Find Full Text PDFWith a view to study the effect of insertion of a multifunctional dye moiety on the photo physical properties of conducting polymers, the present paper reports for the first time the homopolymerization and co-oligomerization of Congo red (CR) dye with aniline and -phenylenediamine. The co-oligomerization was established by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (H-NMR), and ultraviolet-visible (UV-vis) spectroscopy while the morphology was examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The theoretical as well as experimental data of H-NMR as well as IR studies confirmed the co-oligomer formation while ultraviolet-visible spectroscopy studies revealed a dynamic change in the optical properties upon variation of co-oligomer composition.
View Article and Find Full Text PDF