Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice.
View Article and Find Full Text PDFSignificance Statement: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc.
View Article and Find Full Text PDFSignificance Statement: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI).
View Article and Find Full Text PDFKidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease.
View Article and Find Full Text PDFAims: Dietary inorganic phosphate (Pi) modulates renal Pi reabsorption by regulating the expression of the NaPi-IIa and NaPi-IIc Pi transporters. Here, we aimed to clarify the role of several Pi-regulatory mechanisms including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and inositol hexakisphosphate kinases (IP6-kinases) in the acute regulation of NaPi-IIa and NaPi-IIc.
Methods: Wildtype (WT) and PTH-deficient mice (PTH-KO) with/without inhibition of FGF23 signalling were gavaged with Pi/saline and examined at 1, 4 and 12 h.
Na-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase () and upregulates 24-hydroxylase (), thus reducing plasma calcitriol levels.
View Article and Find Full Text PDFKey Points: Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH) vitamin D but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH) vitamin D to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes.
View Article and Find Full Text PDFAim: Several Na -dependent phosphate cotransporters, namely NaPi-IIb/SLC34A2, Pit-1/SLC20A1 and Pit-2/SLC20A2, are expressed at the apical membrane of enterocytes but their contribution to active absorption of phosphate is unclear. The aim of this study was to compare their pattern of mRNA expression along the small and large intestine and to analyse the effect of intestinal depletion of Pit-2 on phosphate homeostasis.
Methods: Intestinal epithelial Pit-2-deficient mice were generated by crossing floxed Pit-2 with villin-Cre mice.
Fibroblast Growth Factor 23 (FGF23) is a phosphaturic factor causing increased renal phosphate excretion as well as suppression of 1,25 (OH)-vitamin D Highly elevated FGF23 can promote development of rickets and osteomalacia. We and others previously reported that acute application of erythropoietin (EPO) stimulates FGF23 production. Considering that EPO is clinically used as chronic treatment against anemia, we used here the Tg6 mouse model that constitutively overexpresses human EPO in an oxygen-independent manner, to examine the consequences of long-term EPO therapy on mineral and bone metabolism.
View Article and Find Full Text PDFFibroblast growth factor 23 (FGF23) is a major endocrine regulator of phosphate and 1,25 (OH) vitamin D metabolism and is mainly produced by osteocytes. Its production is upregulated by a variety of factors including 1,25 (OH) vitamin D, high dietary phosphate intake, and parathyroid hormone (PTH). Recently, iron deficiency and hypoxia have been suggested as additional regulators of FGF23 and a role of erythropoietin (EPO) was shown.
View Article and Find Full Text PDFBackground: The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further activated in the kidney by the 1α-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levels of active 1,25(OH)2D3, other organs also express some of these enzymes.
View Article and Find Full Text PDFNaPi-IIb/Slc34a2 is a Na-dependent phosphate transporter that accounts for the majority of active phosphate transport into intestinal epithelial cells. Its abundance is regulated by dietary phosphate, being high during dietary phosphate restriction. Intestinal ablation of NaPi-IIb in mice leads to increased fecal excretion of phosphate, which is compensated by enhanced renal reabsorption.
View Article and Find Full Text PDFBackground: The Slc4 family of bicarbonate transporters consists of several members, many of which are highly expressed in the kidney and play an important role in acid-base homeostasis. Among them are Ae1 (Slc4a1) and Ae2 (Slc4a2). Another member, Ae3 (Slc4a3), is suggested to be expressed in the kidney, however, its localization and impact on renal function is still unknown.
View Article and Find Full Text PDFCRF receptor subtype 1 (CRF1), abundantly expressed in the central nervous system, has been implicated in defensive behavior in rodents. Pharmacological activation of CRF1 by peptidic agonists results in enhancement of anxiety-like behavior. However, receptor specificity of commonly used agonists was confounded by significant affinity to other receptors and widely used laboratory tests of experimental anxiety suffer from artificial aversive stimulation (e.
View Article and Find Full Text PDFE-cadherin is a cell-cell adhesion molecule and tumor invasion suppressor gene that is frequently altered in human cancers. It interacts through its cytoplasmic domain with beta-catenin which in turn interacts with the Wnt (wingless) signaling pathway. We have compared the effects of different tumor-derived E-cadherin variants with those of normal E-cadherin on Wnt signaling and on genes involved in epithelial mesenchymal transition.
View Article and Find Full Text PDFMutations in the human homologue of Drosophila Patched1 (PTCH1) have been found in several common tumours including basal cell carcinoma, medulloblastoma, and rhabdomyosarcoma (RMS). Medulloblastoma and RMS are also present in the murine model for Ptch1 deficiency. Tumours in heterozygous Ptch1(neo67/+) mice consistently exhibit elevated transcript levels of the proto-oncogene Gli1, of Ptch1 itself, and of the insulin-like growth factor 2 (Igf2).
View Article and Find Full Text PDFThe gene coding for the human homologue of the Drosophila segment polarity gene patched (PTCH1) is mutated in several common human tumors. In mice, haplodeficiency at the Ptch1 locus results in severe histologic defects in mammary ductal structure. We found no mutations within the coding region of PTCH1 in 17 human primary breast carcinomas.
View Article and Find Full Text PDFInherited mutations of the human tumor suppressor gene Patched (PTCH) lead to an autosomal dominant disorder known as Nevoid Basal Cell Carcinoma Syndrome (NBCCS). The syndrome is characterized by a combination of developmental abnormalities and a predisposition to tumor formation. Tumors in patients with NBCCS include basal cell carcinoma, medulloblastoma, fibroma and rhabdomyosarcoma (RMS).
View Article and Find Full Text PDFInherited mutations of Patched (PTCH) in the nevoid basal cell carcinoma syndrome (NBCCS) lead to several developmental defects and contribute to tumor formation in a variety of tissues. PTCH mutations have been also identified in sporadic tumors associated with NBCCS including basal cell carcinoma (BCC) and medulloblastoma. Mice heterozygous for Ptch recapitulate the typical developmental symptoms of NBCCS and develop rhabdomyosarcoma (RMS) and medulloblastoma.
View Article and Find Full Text PDF