Modeling canopy interception is fundamental for understanding the forests' role in local and regional hydrology. In this study, canopy interception (CI), throughfall (TF), and stemflow (SF) were evaluated for a semi-deciduous Atlantic Forest (AFR) from 2013 to 2019, where a prolonged dry period occurred. The Gash and Liu models were analyzed in detail to determine the most appropriate for modeling CI throughout drought conditions.
View Article and Find Full Text PDFClimate variations and historical land use had a major impact on landscape development in the Brazilian Atlantic Forest (Mata Atlântica). In southeast Brazil, rainforest expanded under warm-humid climate conditions in the late Holocene, but have been dramatically reduced in historical times. Nevertheless, the numerous remaining forest fragments are of outstanding biological richness.
View Article and Find Full Text PDF