Publications by authors named "Udo Maier"

Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.

View Article and Find Full Text PDF

Rationale And Objective: Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CFTR modulators offer significant improvements, but ∼10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.

View Article and Find Full Text PDF

Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK.

View Article and Find Full Text PDF

Gene therapies using adeno-associated viruses (AAVs) are among the most promising strategies to treat or even cure hereditary and acquired retinal diseases. However, the development of new efficient AAV vectors is slow and costly, largely because of the lack of suitable non-clinical models. By faithfully recreating structure and function of human tissues, human induced pluripotent stem cell (iPSC)-derived retinal organoids could become an essential part of the test cascade addressing translational aspects.

View Article and Find Full Text PDF
Article Synopsis
  • High Content Screening (HCS) is an advanced method that combines fluorescence imaging with automated analysis to examine how test compounds affect cells in disease models, specifically focusing on type I PI3K activity in CHO cells.
  • The research utilizes Chinese Hamster Ovary (CHO) cells genetically modified to express human insulin receptors and a fluorescent protein, allowing for the observation of changes in the cell's response to insulin-like growth factor-1 stimulation.
  • The study introduces a robust assay for measuring PI3K activity with minimal variability, where the response to PI3K inhibitors can be accurately tested, showing that PI3Kalpha is predominantly activated in this cellular context.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionofl2npapkorjnlhqim994rpecs3rsgf8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once