Publications by authors named "Udit Kumar"

The prevalence of cancer is increasing steadily over the past few decades due to social and environmental factors. Several drugs and medications have also been reported, but with inevitable side effects. Herein comes the urgent need for the development of precision medicine, which increases the efficiency of the drug on the target tissue and minimizes systemic toxicity and non-specificity.

View Article and Find Full Text PDF
Article Synopsis
  • Community-associated and hospital-acquired bacterial infections pose significant global health challenges, exacerbated by ineffective standard disinfection methods on high-touch surfaces.
  • Researchers developed a ceria-silver nanozyme that effectively eliminates harmful bacteria like Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus on both wet and dry surfaces by damaging their cellular structures.
  • Mechanisms of action include the production of reactive oxygen species (like hydrogen peroxide) and electrostatic interactions, leading to bacterial respiration loss and eventual cell death, while showing lasting antibacterial effects in a real clinical setting.
View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface.

View Article and Find Full Text PDF

This study aims to present an ultrasound-mediated nanobubble (NB)-based gene delivery system that could potentially be applied in the future to treat bone disorders such as osteoporosis. NBs are sensitive to ultrasound (US) and serve as a controlled-released carrier to deliver a mixture of Cathepsin K (CTSK) siRNA and cerium oxide nanoparticles (CeNPs). This platform aimed to reduce bone resorption via downregulating CTSK expression in osteoclasts and enhance bone formation via the antioxidant and osteogenic properties of CeNPs.

View Article and Find Full Text PDF

There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce ↔ Ce) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior finding of potent inactivation of enveloped and non-enveloped RNA viruses by silver-modified CNPs, AgCNP1 and AgCNP2.

View Article and Find Full Text PDF

The number of diabetics is increasing worldwide and is associated with significant instances of clinical morbidity. Increased amounts of reactive oxygen species (ROS) and proinflammatory cytokines are associated with the pathogenesis of diabetic wounds and result in a significant delay in healing. Our previous studies have shown the ability of a cerium oxide nanoparticle (CNP) formulation conjugated with the anti-inflammatory microRNA miR146a (CNP-miR146a) to enhance the healing of diabetic wounds.

View Article and Find Full Text PDF

In general, wound healing is a highly ordered process, with distinct phases of inflammation, proliferation, and remodeling. However, among diabetic patients, the progression through these phases is often impeded by increased level of oxidative stress and persistent inflammation. Our previous studies demonstrated that cerium oxide nanoparticles (CNPs) conjugated with therapeutic microRNA146a (miR146a) could effectively enhance wound healing by targeting the NFκB pathway, reducing oxidative stress and inflammation.

View Article and Find Full Text PDF

The COVID-19 pandemic marks an inflection point in the perception and treatment of human health. Substantial resources have been reallocated to address the direct medical effects of COVID-19 and to curtail the spread of the virus. Thereby, shortcomings of traditional disinfectants, especially their requirement for regular reapplication and the related complications (e.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the importance of research and development in maintaining public health. Facing unprecedented challenges, the scientific community developed antiviral drugs, virucides, and vaccines to combat the infection within the past two years. However, an ever-increasing list of highly infectious SARS-CoV-2 variants (gamma, delta, omicron, and now ba.

View Article and Find Full Text PDF

The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines).

View Article and Find Full Text PDF

Laboratory and experimental scale manufacturing processes are limited by human error (e.g., poor control over motion and personal subjectivity), especially under fatiguing conditions involving precise, repetitive operations, incurring compounding errors.

View Article and Find Full Text PDF

The COVID19 pandemic has brought global attention to the threat of emerging viruses and to antiviral therapies, in general. In particular, the high transmissibility and infectivity of respiratory viruses have been brought to the general public's attention, along with the need for highly effective antiviral and disinfectant materials/products. This study has developed two distinct silver-modified formulations of redox-active nanoscale cerium oxide (AgCNP1 and AgCNP2).

View Article and Find Full Text PDF

Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring.

View Article and Find Full Text PDF

Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and -1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)Mn(μ-SeR)Mn(CO)}(μ-L)] (-) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles - was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses.

View Article and Find Full Text PDF

The present study investigated the potential protective effects of cerium oxide nanoparticles (CNP) on human retinal pigment epithelium (ARPE-19) cells damaged by hydroxychloroquine (HCQ). Toxicity of HCQ on the ARPE-19 cells was explored with a dose response trial. CNP rescue both a pre-treatment protocol, where CNP were applied 24 hours prior to HCQ application and a simultaneous treatment protocol where both CNP and HCQ were applied together, were used.

View Article and Find Full Text PDF

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers.

View Article and Find Full Text PDF

Effectively controlling vector mosquito populations while avoiding the development of resistance remains a prevalent and increasing obstacle to integrated vector management. Although, metallic nanoparticles have previously shown promise in controlling larval populations via mechanisms which are less likely to spur resistance, the impacts of such particles on life history traits and fecundity of mosquitoes are understudied. Herein, we investigate the chemically well-defined cerium oxide nanoparticles (CNPs) and silver-doped nanoceria (AgCNPs) for larvicidal potential and effects on life history traits and fecundity of Aedes (Ae.

View Article and Find Full Text PDF

Wound healing is of major clinical concern and is constantly being explored for early restoration and enhanced recovery. While the etiology of the wound healing is multifactorial, high inflammation and increased oxidative stress which results in chronic inflammation, endothelial dysfunction and collagen degradation, delay the overall healing process. Thus, visual sensing of the oxidative stress would be highly informative in the successful implementation of wound healing therapies based on specific requirements.

View Article and Find Full Text PDF

Oxidative injury is implicated in retinal damage observed in age-related macular degeneration (AMD), as well as other degenerative conditions. Abnormally elevated levels of iron accumulation within the retinal pigment epithelium have been detected in eyes with AMD, and it is suspected to play a role in the pathogenesis through the production of reactive oxygen species (ROS). Ceria nanoparticles (CNP) have the ability to scavenge ROS.

View Article and Find Full Text PDF

Nanocrystalline cerium oxide (nanoceria) is a rare earth oxide with a complex surface chemistry. This material has seen substantial investigation in recent years in both fundamental and applied studies due largely to more precise characterization of the unique surface structures, which mediate its pronounced redox activity. In particular, oxygen storage/buffering capacities have been thoroughly correlated with synthesis and processing condition effects on other material features such as surface (micro-) faceting, reconstruction, and (extent of) hydration.

View Article and Find Full Text PDF

Background Clinical or biochemical markers that have good correlation with magnetic resonance proton density fat fraction (MR PDFF) can be used as simple tools for the screening for nonalcoholic fatty liver disease (NAFLD) and in determining the degree of fatty infiltration of the liver. The objective of this study was to determine the degree of relationship between MR PDFF and ultrasonography (USG) grades of fatty liver, and clinical and biochemical parameters of adolescents and to determine the sensitivity and specificity of USG for diagnosis of NAFLD. Methods This prospective study included 34 overweight adolescents (mean age, 12.

View Article and Find Full Text PDF