Publications by authors named "Udit Gupta"

Cancer immunotherapy has revolutionized cancer treatment by leveraging the immune system to attack tumors. However, its effectiveness is often hindered by the immunosuppressive tumor microenvironment (TME), where a complex interplay of tumor, stromal, and immune cells undermines antitumor responses and allows tumors to evade immune detection. This review explores innovative strategies to modify the TME and enhance immunotherapy outcomes, focusing on the therapeutic potential of engineered bacteria.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) can respond to various mechanical cues such as shear stress and substrate stiffness. In the human brain, the compromised barrier function of the BBB is closely associated with a series of neurological disorders that are often also accompanied by the alteration of brain stiffness. In many types of peripheral vasculature, higher matrix stiffness decreases barrier function of endothelial cells through mechanotransduction pathways that alter cell-cell junction integrity.

View Article and Find Full Text PDF

Rationale And Hypothesis: Advancements in technology, human adaptability, and funding have increased space exploration and in turn commercial spaceflight. Corporations such as Space X and Blue Origin are exploring methods to make space tourism possible. This could lead to an increase in the number of patients presenting with neurological diseases associated with spaceflight.

View Article and Find Full Text PDF
Article Synopsis
  • The use of better medicines has helped people with HIV live longer, but it can still cause brain problems called HAND.
  • Researchers are looking into a treatment called DHF, which acts like a brain helper protein to improve memory and brain health in mice with HAND.
  • DHF seems to fix some of the brain damage caused by HIV and may help improve treatments for people with HAND alongside their regular medications.
View Article and Find Full Text PDF

Complex reaction networks can be generated with automated network generators from initial reactants and reaction rules. Reaction rule specification is central to network generation. These reaction rules are, at present, user-defined based on (intuitive) expert knowledge of chemistry and are often transferred from gas-phase to surface processes.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research.

View Article and Find Full Text PDF

Mucin-type O-glycans have profound effects on the structure and stability of glycoproteins. O-Glycans on the cell surface proteins also modulate the cell's interactions with the surrounding environments and other cells. The synthetic pathway of O-glycans involves a large number of enzymes with diverse substrate specificity.

View Article and Find Full Text PDF

This paper describes how Rule Input Network Generator (RING), a network generation computational tool, can be adopted to generate a variety of complex biochemical reaction networks. The reaction language incorporated in RING allows representation of chemical compounds in biological systems with various structural complexity. Complex molecules such as oligosaccharides in glycosylation pathways can be described using a simplified representation of their monosaccharide building blocks and glycosidic bonds.

View Article and Find Full Text PDF