Publications by authors named "Udenfriend S"

The glycophosphatidylinositol (GPI) anchors of proteins expressed on human erythrocytes and nucleated cells differ with respect to acylation of an inositol hydroxyl group, a structural feature that modulates their cleavability by PI-specific phospholipase C (PI-PLC). To determine how this GPI anchor modification is regulated, the precursor and protein-associated GPIs in two K562 cell transfectants (ATCC and .48) exhibiting alternatively PI-PLC-sensitive and resistant surface proteins were analyzed and the temporal relationship between GPI protein transfer and acquisition of PI-PLC sensitivity was determined.

View Article and Find Full Text PDF

The final step in glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins consists of a transamidation reaction in which preassembled GPI donors are substituted for C-terminal signal sequences in nascent polypeptides. In previous studies we described a human K562 cell mutant, termed class K, that accumulates fully assembled GPI units but is unable to transfer them to N-terminally processed proproteins. In further work we showed that, unlike wild-type microsomes, microsomes from these cells are unable to support C-terminal interaction of proproteins with the small nucleophiles hydrazine or hydroxylamine, and that the cells thus are defective in transamidation.

View Article and Find Full Text PDF

Proteins anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) moiety are found in all eukaryotes. After NH2-terminal peptide cleavage of the nascent protein by the signal peptidase, a second COOH-terminal signal peptide is cleaved with the concomitant addition of the GPI unit. The proposed mechanism of the GPI transfer is a transamidation reaction that involves the formation of an activated carbonyl intermediate (enzyme-substrate complex) with the ethanolamine moiety of the preassembled GPI unit serving as a nucleophile.

View Article and Find Full Text PDF

The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol (GPI) substitution is now recognized to be a ubiquitous method of anchoring a protein to membranes in eukaryotes. The structure of GPI and its biosynthetic pathways are known and the signals in a nascent protein for GPI addition have been elucidated. The enzyme(s) responsible for GPI addition with release of a COOH-terminal signal peptide has been considered to be a transamidase but has yet to be isolated, and evidence that it is a transamidase is indirect.

View Article and Find Full Text PDF

A neutral and basic amino acid transporter (NBAT) cloned from rat kidney was recently localized to enteroendocrine cells and enteric neurons. We used an antibody directed against a synthetic peptide representing a putative extracellular domain of NBAT to determine whether this transporter was also present in other endocrine and neural tissues, including rat adrenal gland, brainstem, and spinal cord. Abundant, highly granular labeling for NBAT was observed in the cytoplasm of chromaffin and ganglion cells in the adrenal medulla.

View Article and Find Full Text PDF

Rough microsomal membranes from most mammalian cells, in the presence of a translation system, process nascent proteins with appropriate COOH-terminal signal peptides to their mature glycosylphosphatidylinositol (GPI)-linked forms. The present study, using preprominiplacental alkaline phosphatase as substrate, shows that as much as 10% of the mature product is cleaved correctly but is not linked to GPI. Some of the factors that influence the relative proportions of GPI linked to free mini-placental alkaline phosphatase are the amounts of GPI in the cells and the amino acid substituent at the omega site of the nascent protein.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol (GPI) linkage is a fairly common means of anchoring membrane proteins to eukaryotic cells, although the exact function of the GPI linkage is not clear. The nascent form of a typical GPI protein contains a hydrophobic NH2-terminal signal peptide that directs it to the ER. There the signal peptide is removed by NH2-terminal signal peptidase.

View Article and Find Full Text PDF

A recently cloned rat kidney protein (NBAT) mediates the sodium-independent transport of neutral as well as basic amino acids and cystine when expressed in Xenopus laevis oocytes. The human equivalent of this transporter may be the one that is defective in cystinuria. Immunocytochemical studies have indicated that NBAT is primarily localized in the brush border membranes of rat kidney and intestinal epithelial cells, a localization consistent with its proposed role in amino acid transport.

View Article and Find Full Text PDF

The promoter region of the rat kidney neutral and basic amino acid transporter (NBAT) gene has been isolated and sequenced. The major transcription initiation site was mapped by primer extension. The entire promoter region and a set of 5' deletions within it were expressed at a high level in LLC-PK1 cells using the luciferase indicator gene.

View Article and Find Full Text PDF

A sodium-independent neutral and basic amino acid transporter (NBAT) from rat kidney was recently cloned and its amino acid sequence deduced. We used light and electron microscopic immunoperoxidase labeling to determine the cellular localization of NBAT in rat kidney and small intestine. The localization was carried out using site-directed antisera raised against synthetic peptides within NBAT.

View Article and Find Full Text PDF

High-titer, site-specific antibodies have been produced against the rat kidney broad-spectrum, sodium-independent neutral and basic amino acid transporter (NBAA-Tr) whose cDNA we cloned earlier. These antibodies have allowed us to characterize the transporter protein in normal rat tissues and in various cellular and in vitro expression systems. Western analysis detected 84- to 87-kDa glycosylated species enriched in rat renal and jejunal epithelial cell brush border membranes.

View Article and Find Full Text PDF

Nascent proteins destined to be processed to a glycosylphosphatidylinositol (GPI)-anchored membrane form contain NH2-terminal and COOH-terminal signal peptides. The first directs a nascent protein into the endoplasmic reticulum; the second peptide targets the protein to a putative COOH-terminal signal transamidase where cleavage of the peptide and addition of the GPI anchor occur. We recently showed that ATP hydrolysis is required for maturation of GPI proteins at a stage prior to transamidation.

View Article and Find Full Text PDF

Placental alkaline phosphatase (PLAP) has been used as a model for studying the biosynthesis of the phosphatidylinositol-glycan (PI-G)-protein linkage in intact cells and in cell-free systems. However, for the study of processing in cell-free systems, a small protein devoid of glycosylation sites is preferable. A PLAP-derived cDNA was engineered that codes for a nascent protein (mini-PLAP) of 28 kDa in which the NH2- and COOH-termini are retained but most of the interior of PLAP is deleted.

View Article and Find Full Text PDF

The Na(+)-independent neutral amino acid transporter (NAA-Tr) that we had previously cloned from rat kidney has been investigated with respect to its distribution in mammalian tissues and cells. By Northern blot analysis and RNase protection assay, a 2.4-kilobase (kb) mRNA in rat intestine was found to be identical to that in rat kidney.

View Article and Find Full Text PDF

Placental alkaline phosphatase (PLAP) belongs to a class of proteins that are anchored to the plasma membrane by a COOH-terminal phosphatidylinositol-glycan (PI-G) moiety. Nascent forms of such proteins undergo NH2- and COOH-terminal processing to yield the mature PI-G-tailed proteins. We previously introduced a shortened engineered form of preproPLAP (preprominiPLAP) that permits monitoring in cell-free preparations its sequential processing to the pro form and then to the mature PI-G-tailed form.

View Article and Find Full Text PDF

Secreted proteins are processed from a nascent form that contains an NH2-terminal signal peptide. During processing, the latter is cleaved by a specific NH2-terminal signal peptidase. The nascent form of phosphatidylinositol glycan (PI-G) tailed proteins contain both an NH2- and a COOH-terminal signal peptide.

View Article and Find Full Text PDF

It is generally recognized that nascent proteins destined to be processed to a phosphatidylinositol-glycan (PI-G)-anchored membrane form contain a hydrophobic signal peptide at both their NH2 and COOH termini. In previous studies we showed that rough microsomal membranes (RM) prepared from CHO cells can carry out COOH-terminal processing. We have now investigated RM prepared from many additional cell types, including frog oocytes, B cells, and T cells, and found that all are competent with respect to COOH-terminal processing.

View Article and Find Full Text PDF

Nascent translation products of PI-G-anchored membrane proteins contain both NH2- and COOH-terminal signal sequences of approximately 15-30 residues that are removed during processing. Removal of the latter occurs concomitant with the addition of the PI-G moiety to the newly formed COOH terminus. In human placental alkaline phosphatase (PLAP) the COOH-terminal signal peptide contains 29 residues.

View Article and Find Full Text PDF

Certain proteins are anchored to the outer plasma membrane by a phosphatidylinositol-glycan (PI-G) linker. Nascent forms of PI-G anchored proteins contain both NH2- and COOH-terminal signal peptides. The function and structural requirements of the COOH-terminal signal peptide as discussed and some studies on the cell-free processing of a nascent protein to its mature PI-G tailed form are presented.

View Article and Find Full Text PDF