Publications by authors named "Ude C"

This case emphasizes the rare occurrence of Takotsubo cardiomyopathy (TTC) in a patient with moderate coronary artery disease (CAD), highlighting the complexity of diagnosis and management. Clinicians should maintain a high index of suspicion for TTC in patients with CAD, especially when echocardiographic findings suggest apical ballooning. Balancing therapies for both conditions is essential.

View Article and Find Full Text PDF
Article Synopsis
  • Knee orthoses are commonly used to help manage knee deficiencies, particularly in patients with osteoarthritis, which is a leading cause of disability.
  • This literature review aims to inform clinicians, patients, and researchers about the main types of knee braces—unloader, patellofemoral, and knee sleeves—by discussing their design, function, and effectiveness.
  • While many patients feel they benefit from wearing these braces, the scientific evidence supporting their effectiveness remains inconclusive.
View Article and Find Full Text PDF

Purpose: Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis.

View Article and Find Full Text PDF

Cobalt-containing alloys are useful for orthopedic applications due to their low volumetric wear rates, corrosion resistance, high mechanical strength, hardness, and fatigue resistance. Unfortunately, these prosthetics release significant levels of cobalt ions, which was only discovered after their widespread implantation into patients requiring hip replacements. These cobalt ions can result in local toxic effects-including peri-implant toxicity, aseptic loosening, and pseudotumor-as well as systemic toxic effects-including neurological, cardiovascular, and endocrine disorders.

View Article and Find Full Text PDF

In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand.

View Article and Find Full Text PDF

Arthroplasty implants can undergo corrosion at the modular components, trunnion, and hinges, owing to implant material makeup, micromotion, and interaction with body fluid. In this review, various mechanisms of corrosion in arthroplasty were explored with suggestions on means of improvement. We identified 10 methods including pitting, crevice, mechanically assisted crevice corrosion, fretting, fretting initiated crevice corrosion, mechanically assisted taper corrosion, galvanic corrosion, stress/tension, fatigue corrosion, and inflammatory cell induced corrosion.

View Article and Find Full Text PDF

Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials.

View Article and Find Full Text PDF

Successful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen.

View Article and Find Full Text PDF

In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability.

View Article and Find Full Text PDF

Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct.

View Article and Find Full Text PDF

Purpose: The knee joint is prone to osteoarthritis (OA) due to its anatomical position, and several reports have implicated the imbalance between catabolic and anabolic processes within the joint as the main culprit, thus leading to investigations towards attenuation of these inflammatory signals for OA treatment. In this review, we have explored clinical evidence supporting the use of stromal vascular fraction (SVF), known for its anti-inflammatory characteristics for the treatment of OA.

Methods: Searches were made on PubMed, PMC, and Google Scholar with the keywords "adipose fraction knee regeneration, and stromal vascular fraction knee regeneration, and limiting searches within 2017-2020.

View Article and Find Full Text PDF

Osteoarthritis (OA) of the knee is the most common synovial joint disorder worldwide, with a growing incidence due to increasing rates of obesity and an aging population. A significant amount of research is currently being conducted to further our understanding of the pathophysiology of knee osteoarthritis to design less invasive and more effective treatment options once conservative management has failed. Regenerative engineering techniques have shown promising preclinical results in treating OA due to their innovative approaches and have emerged as a popular area of study.

View Article and Find Full Text PDF

Integrating optical sensors and 3D-printed optics into single-use (SU) cultivation vessels for customized, tailor-made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space-saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels.

View Article and Find Full Text PDF

Metallosis is defined as the accumulation and deposition of metallic particles secondary to abnormal wear from prosthetic implants that may be visualized as abnormal macroscopic staining of periprosthetic soft tissues. This phenomenon occurs secondary to the release of metal ions and particles from metal-on-metal hip implants in patients with end-stage osteoarthritis. Ions and particles shed from implants can lead to local inflammation of surrounding tissue and less commonly, very rare systemic manifestations may occur in various organ systems.

View Article and Find Full Text PDF

spp. endospores are important dormant cell forms and are distributed widely in environmental samples. While these endospores can have important industrial value (e.

View Article and Find Full Text PDF

Ever since the pioneering research efforts on their utility in biomedicine, polyphosphazene polymers have witnessed enormous growth and expansion in several biomedical applications due to their unique properties. The development of this exceptional biodegradable system with extraordinary design flexibility, property tunability and neutral bioactivity could stimulate an unprecedented paradigm in biomaterial design. Thus, polyphosphazenes are, undoubtedly, the next-generation biomaterials.

View Article and Find Full Text PDF

This study presents predictive modelling with uncertainty analysis, optimization and techno-economic feasibility of Bio-catalyzed Biodiesel Production from Azidirica Indica Oil (BCBPAIO). Central Composite Design (CCD) predictive model and optimum conditions for BCBPAIO were developed in Design Expert software. The model uncertainty analysis was performed using Monte Carlo simulation.

View Article and Find Full Text PDF

In an effort to understand the biological capability of polyphosphazene-based polymers, three-dimensional biomimetic bone scaffolds were fabricated using the blends of poly[(glycine ethylglycinato)(phenylphenoxy)]phosphazene (PNGEGPhPh) and poly(lactic--glycolic acid) (PLGA), and an in vivo evaluation was performed in a rabbit critical-sized bone defect model. The matrices constructed from PNGEGPhPh-PLGA blends were surgically implanted into 15 mm critical-sized radial defects of the rabbits as structural templates for bone tissue regeneration. PLGA, which is the most commonly used synthetic bone graft substitute, was used as a control in this study.

View Article and Find Full Text PDF

root (NLR) extract is one of phytochemicals used to treat various ailments in most of developing countries. This investigation focuses on modelling, optimization and computer-aided simulation of phenolic solid-liquid extraction from NLR. The extraction experiments were conducted at extraction temperature (ET: 33.

View Article and Find Full Text PDF

This chapter describes the methods of isolation of mouse periosteal progenitor cells. There are three basic methods utilized. The bone grafting method was developed utilizing the fracture healing process to expand the progenitor populations.

View Article and Find Full Text PDF

Buried explosive material, e.g., landmines, represent a severe issue for human safety all over the world.

View Article and Find Full Text PDF

The study objectives include, enhancing the proliferations of aged bone marrow stem cells (BMSCs) and adipose stem cells (ADSCs); and evaluating the shelf lives of clinical grade chondrogenically induced cells from both samples. ADSCs and BMSCs from 56 patients (76 ± 8 yrs) were proliferated using basal medium (FD) and at (5, 10, 15, 20 and 25) ng/ml of basal fibroblast growth factor (bFGF). They were induced to chondrogenic lineage and stored for more than 120 hrs in FD, serum, Dulbecco's phosphate buffered saline (DPBS) and saline at 4 °C.

View Article and Find Full Text PDF

The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war.

View Article and Find Full Text PDF

Background: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

View Article and Find Full Text PDF

In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control.

View Article and Find Full Text PDF