Random regression (RR) models are recommended as an alternative to multiple-trait (MT) models for better capturing the variance-covariance structure over a trajectory and hence more accurate genetic evaluation of traits that are repeatedly measured and genetically change gradually over time. However, a limited number of studies have been done to empirically compare RR over a MT model to determine how much extra benefit could be achieved from one method over another. We compared the prediction accuracy of RR and MT models for growth traits of Australian meat sheep measured from 60 to 525 d, using 102,579 weight records from 24,872 animals.
View Article and Find Full Text PDF