The main objectives of our study were to determine the bioavailability of omega-3 (omega-3) to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the omega-6 polyunsaturated fatty acids (PUFAs) metabolizing 15-lipoxygenase-1 (15-LO-1) and cyclooxygenase-2 (COX-2) pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat) diet groups: high omega-6 linoleic acid (LA), high omega-3 stearidonic acid (SDA) PUFAs, and normal (control) diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks) omega-3 and omega-6 fatty acid diets.
View Article and Find Full Text PDFDiets high in fat seem to correspond with an increased risk of certain forms of cancer, including bladder BlCa. This preliminary study examined the expression and enzyme activity profile of the polyunsaturated fatty acid metabolizing enzyme 15-Lipoxygenase-1 (15-LO-1) in human tissues from normal bladder and bladder tumors (stages CIS-T3/T4). Human tissue samples from normal (donor) bladder and bladder tumors (stages CIS-T3/T4; non-Bacillus Calmette-Guerin-treated) were grossly microdissected and analyzed for 15-LO-1 protein expression [immunohistochemistry (IHC)/Western blot], mRNA expression (quantitative real-time polymerase chain reaction) and enzyme activity profiles.
View Article and Find Full Text PDFThe lipid-peroxidating enzyme, 15-lipoxygenase (LO)-1 and its metabolite, 13-S-hydroxyoctadecadienoic acid (13-S-HODE), likely contribute to prostate tumorigenesis. Thus, this study evaluated adenovirus-mediated overexpression of 15-LO-1 on normal mouse prostate. Adenovirus expressing either human 15-LO-1 tagged with green fluorescent protein (GFP) or GFP alone was orthotopically injected into the dorsolateral prostates of C57BL/6 mice, three times over the course of 60 days.
View Article and Find Full Text PDFThe incidence and mortality of prostate cancer (PCa) vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1), which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate.
View Article and Find Full Text PDFEvidence indicates that a diet rich in omega (omega)-6 polyunsaturated fatty acids (PUFAs) [e.g., linoleic acid (LA)] increases prostate cancer (PCa) risk, whereas a diet rich in omega-3 decreases risk.
View Article and Find Full Text PDFChanges in the expression and activity of lipid-metabolizing enzymes, including the linoleic acid (LA)-metabolizing enzyme 15-lipoxygenase-1 (15-LO-1), may play a role in the development and progression of human prostate carcinoma (PCa). We reported that human 15-LO-1 (designated as leukocyte type 12-LO or 12/15-LO in mouse) is expressed in human prostate and increased in PCa, particularly high-grade PCa. Genetically engineered mouse (GEM) models of PCa could facilitate the study of this gene and its regulation and function in PCa progression.
View Article and Find Full Text PDFWe previously discovered that a fat-metabolizing enzyme, 15-lipoxygenase-1 (15-LO-1), is high in human prostate cancer (PCa) and correlates with disease progression. The biologic link between the aberrant 15-LO-1/linoleic acid (LA) metabolism and fat (which is a rich source of growth factors) in PCa is unknown. Therefore, we tested the hypothesis that the metabolic product of the polyunsaturated fatty acid LA (i.
View Article and Find Full Text PDF