Publications by authors named "Uday Pratap Azad"

Over the past ten years, microfluidic paper-based analytical devices (micro-PADs) have attracted a lot of attention as a viable analytical platform. It is expanding as a result of advances in manufacturing processes and device integration. Conventional microfluidics approaches have some drawbacks, including high costs, lengthy evaluation times, complicated fabrication, and the necessity of experienced employees.

View Article and Find Full Text PDF

Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials (NMs) have diverse mechanical, chemical and optical properties due to which they have received a lot of attention in various fields such as biosensors, imaging, tissue engineering, drug delivery, etc. A thorough understanding of the synthetic procedure, physical properties and electrochemical properties of 2D materials will be quite useful in the development of novel and high-efficient electrocatalysts for the electroanalytical application of our interest. This review article summarises the synthesis and application of graphene, graphitic carbon nitride, transition metal dichalcogenides and phosphorene for electrochemical biosensing, drug delivery application and environmental monitoring.

View Article and Find Full Text PDF

A monolayer of boron known as borophene has emerged as a novel and fascinating two-dimensional (2D) material with exceptional features, such as anisotropic metallic behavior and supple mechanical and optical capabilities. The engineering of smart functionalized opto-electric 2D materials is essential to obtain biosensors or biodevices of desired performance. Borophene is one of the most emerging 2D materials, and owing to its excellent electroactive surface area, high electron transport, anisotropic behavior, controllable optical and electrochemical properties, ability to be deposited on thin films, and potential to create surface functionalities, it has recently become one of the sophisticated platforms.

View Article and Find Full Text PDF

Nanobiosensors are devices that utilize a very small probe and any form of electrical, optical, or magnetic technology to detect and analyze a biochemical or biological process. With an increasing population today, nanobiosensors have become the broadly used electroanalytical tools for the timely detection of many infectious (dengue, hepatitis, tuberculosis, leukemia, etc.) and other fatal diseases, such as prostate cancer, breast cancer, etc.

View Article and Find Full Text PDF

A nanosensor comprising of gold nanostars (Au-Nstars)-graphitic carbon nitride (g-CN) nanocomposite layered on a glassy carbon electrode (GCE) to detect serotonin (ST) in various body fluids has been fabricated. The nanocomposite and the sensing platform have been thoroughly characterized with UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray photoelectron spectroscopy (EDX), and electrochemical techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The designed ST detection probe has achieved a linear dynamic range (LDR) in the range 5 × 10 and 1 × 10 M with a limit of detection (LOD) of 15.

View Article and Find Full Text PDF

In this paper, we demonstrate a facile solvothermal synthesis of a vanadium(v) doped MoS-rGO nanocomposites for highly efficient electrochemical hydrogen evolution reaction (HER) at room temperature. The surface morphology, crystallinity and elemental composition of the as-synthesized material have been thoroughly analyzed. Its fascinating morphology propelled us to investigate the electrochemical performance towards the HER.

View Article and Find Full Text PDF

Replacing platinum (Pt) metal-based electrocatalysts used in the oxygen reduction reaction (ORR) in fuel cells is an important research topic due to the high cost and scarcity of Pt, which have restricted the commercialization of these clean-energy technologies. The ABO-type perovskite family of an ACuTiO (A = Ca, Y, Bi, and La) polycrystalline material can serve as an alternative electrocatalyst for the ORR in terms of low-cost, activity, and stability. These perovskite materials may be considered the next generation electro-catalyst for the ORR because of their photocatalytic activity and physical and chemical properties capable of containing a wide range of A- and B-site metals.

View Article and Find Full Text PDF

Four polypyridyl redox catalysts Fe(bp)3(2+), Fe(ph)3(2+), Fe(dm)3(2+), and Fe(tm)3(2+) (with bp, ph, dm, and tm representing 2,2'-bipyridine, 1,10-phenanthroline, 4,4'-dimethyl-2,2'-bipyridine, and 3,4,7,8-tetramethyl-1,10-phenanthroline, respectively) are investigated for the electrocatalytic oxidation of three analytes (nitrite, arsenite, and isoniazid). The poly-pyridyl iron complex is exchanged into a Nafion film immobilized on a glassy carbon electrode, which is then immersed in 0.1 M Na2SO4.

View Article and Find Full Text PDF

Fe(dmbpy)3(2+) (where dmbpy is 4,4'-dimethyl-2,2'-bipyridine) was immobilized by ion-exchange in a bentonite clay film coating on a glassy carbon electrode. Cyclic voltammetry characteristics of the immobilized Fe(dmbpy)3(2+) were stable and reproducible corresponding to the Fe(dmbpy)3(2+/3+) redox process. In the presence of isoniazid (IZ), the electrogenerated in film Fe(dmbpy)3(3+) oxidized IZ efficiently producing large anodic current.

View Article and Find Full Text PDF

Fe(bpy)(3)(2+) (where bpy = 2,2' bipyridyl) immobilized Nafion (Nf) modified glassy carbon electrodes were prepared and they showed excellent electrocatalytic oxidation of nitrite (NO(2)(-)) which leads to the sensitive determination of NO(2)(-). Electrostatic repulsion between NO(2)(-) and Nf film is greatly decreased when Nf film is fully exchanged with cations.

View Article and Find Full Text PDF